Home About us Contact | |||
Niutitang Formation (niutitang + formation)
Selected AbstractsMultiple Sources of Metals of Mineralization in Lower Cambrian Black Shales of South China: Evidence from Geochemical and Petrographic StudyRESOURCE GEOLOGY, Issue 1 2008Jan Pa Abstract Black shales of the Lower Cambrian Niutitang Formation in southern China (Huangjiawan mine, Zunyi region, northern part of the Guizhou Province) host regionally distributed stratiform polymetallic Ni-Mo-platinum group elements (PGE)-Au phosphate- and sulfide-rich ores. These are confined to a ,0.2-m thick ore horizon composed of mineralized bodies of algal onkolites, phosphate nodules, and sulfide and shale clasts in a mineralized phosphate- and organic matter-rich matrix. Compared to footwall and hanging wall shales, the ore bed is strongly enriched in Ni (up to 100-fold), As (up to 97-fold), Mo (up to 95-fold), Sb (up to 67-fold), Rh (up to 49-fold), Cu (up to 37-fold), Pd (up to 33-fold), Ru (up to 24-fold), Zn (up to 23-fold), Pt (up to 21-fold), Ir (up to 15-fold), Co (up to 14-fold), and Pb (up to 13-fold). Even footwall and hanging wall black shales are significantly enriched by Mo (21-fold) and Ni (12-fold) but depleted in Cr in comparison to average Cambrian black shale. Organic matter is represented by separate accumulations dispersed in the rock matrix or as biotic bitumen droplets and veinlets in ore clasts. Similar organic carbon (Corg) values in an ore bed and enclosing footwall and hanging wall shales of little mineralization indicate that metal accumulation was not controlled only by biogenic productivity and organic matter accumulation rate. Evaporitic conditions during sedimentation of the basal part of the Niutitang Formation were documented by an occurrence of preserved Ni-, V-, Cr-, and Cu-enriched phosphate-rich hardground with halite and anhydrite pseudomorphs on the paleosurface of the underlying Neoproterozoic carbonates. Neoproterozoic black shales of the Doushantuo Formation are characterized by increased metal concentrations. Comparison of metal abundances in both hardground and Doushantuo black shales indicate that black shales could have become a source of metal-rich hardground during weathering. The polymetallic Ni-Mo-PGE sulfide-rich ore bed is interpreted to represent a remnant of shallow-water hardground horizon rich in metals, which originated in a sediment-starved, semi-restricted, seawater environment. During the Early Cambrian transgression an influx of fresh seawater and intensive evaporation, together with the hydrothermal enrichment of seawater in a semi-restricted basin, resulted in the formation of dense metalliferous brines; co-precipitation of metals together with phosphates and sulfides occurred at or above the oxic,anoxic sediment interface. Metal-enriched hardground was disintegrated by the action of waves or bottom currents and deposited in a deeper part of the anoxic basin. Contemporaneously with the formation of a polymetallic Ni-Mo-PGE-Au sulfide ore bed, economic sedimentary exhalative (SEDEX)-type barite deposits were forming in a stratigraphically and geotectonically similar setting. The results of geochemical study at the Shang Gongtang SEDEX-type Ba deposit indicate that concentrations of Ag, As, Cr, Cu, Fe, Mn, Ni, Pb, Sb, V, Zn and other metals decrease from top of the barite body toward the hanging wall black shale. Lower Cambrian black shales of the Niutitang Formation above the barite body also display similar element abundances as Neoproterozoic black shales of the Doushantuo Formation, developed in the footwall of the barite body. But the geochemical composition of the sulfide layer is different from the Ni-Mo ore bed, showing only elevated Pb, Cu, Ni and Mo values. It is suggested that hydrothermal brines at Shang Gongtang might have leached metals from footwall Neoproterozoic sequences and became, after mixing with normal seawater, an additional source of Ag, Cr, Cu, Pb, Sb, Zn, Ni, PGE, V and other metals. [source] Structural Analysis of the Multi-layer Detachment Folding in Eastern Sichuan ProvinceACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 3 2010Zongxiu WANG Abstract: A serial of "comb-like and trough-like" folds developed in eastern Sichuan, controlled by the multi-layer detachment folding, is different from the classical Jura-type structure in their development. The key factor resulting in the development of these structures is the occurrence of detachment layers in different parts of Neoprotozoic to Mesozoic stratigraphy of study area, which, from the bottom to the top, are the lower part of Banxi Group, Lower Cambrian (Niutitang Formation), Lower Silurian (Longmaxi Formation and Luoreping Formation), Upper Permian (Wujiaping Formation) and Lower Triassic (Daye Formation). On the basis of field survey combined with sand-box modeling, this study argued that the detachment layer of the lower part of Banxi Group controlled the development of the "comb-like" folds, and the lower part of Cambrian detachment layer controlled the development of "trough-like" folds. Because of several detachment layers occurring in the study area, the development of duplex structures different scales is an important deformation mechanism, and the duplexes are the important structures distinguished from the typical detachment folding structures. Due to these duplexes, the surface structures and structural highs may not be the structural highs in the depth. Meanwhile, the detachment layers are good channels for oil/gas migration benefiting the understanding of accumulation and migration of oil and gas. [source] New Bradoriid Arthropods from the Early Cambrian Balang Formation of Eastern Guizhou, South ChinaACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 1 2010Jin PENG Abstract: The Early Cambrian Balang Formation is comprised of mudrock and shale, which was deposited in a shelf environment in the eastern part of Guizhou, south China. The Balang Fauna, which consists of seven phyla, occurs in the middle and upper parts of the Balang Formation. Arthropods are important constituents of the Balang Fauna and include a great number of trilobites, large bivalved arthropods, and newly-discovered well-preserved bradoriid fossils. The bradoriids present include three genera and four species: Comptaluta inflate (Cheng, 1974) emend Hou et al., 2002; Comptaluta kailiensis sp. nov, and Alutella elongeta sp. nov, Aluta sp. This faunal assemblage in the Balang Formation is distinguished from the Tsunyiella Chang, 1964, Songlinella Yin, 1978 and Kunmingella Hou, 1956 assemblage which occurs in the Niutitang and Mingxinsi formations of the Yangtze Platform in middle region of Guizhou and which is earlier than the Balang Formation in age. However, this assemblage resembles the ComptalutaÖpik, 1968 assemblage from the Early Cambrian Heilinpu Formation in Wuding County, Yuanan Province and from the Ordian Stage of the Cambrian of Australia. The great abundance of ComptalutaÖpik, 1968 and overall taxonomic diversity of the ComptalutaÖpik, 1968 assemblage set it distinctly apart from the Alutella Kobayashi et Kato, 1951 and Aluta Hou, 1956 assemblages of the Balang Formation. Alutella Kobayashi et Kato, 1951 and Aluta Hou, 1956 also occur in the Early Cambrian Niutitang Formation of the Yangtze Platform of Guizhou. Individual Bradoriids from the Balang Formation are characterized by large size (>3 mm). The discovery of new Bradoriid assemblages not only expands the group's geographical range and assemblage affinities, but also indicates that Bradoriids migrated eastward from shallow-water to deeper-water environments during the Early Cambrian, indicating that they were capable of life in deeper-water, and adaptation to a new ecological setting. [source] Geochemistry of Platinum Group and Rare Earth Elements of the Polymetallic Layer in the Lower Cambrian, Weng'an, Guizhou ProvinceACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 3 2009Yong FU Abstract: The black shales of the Lower Cambrian Niutitang Formation in Weng'an, on the Yangtze platform of south China, contain voluminous polymetallic sulfide deposits. A comprehensive geochemical investigation of trace, rare earth, and platinum group elements (PGE) has been undertaken in order to discuss its ore genesis and correlation with the tectono-depositional setting. The ore-bearing layers enrich molybdenum (Mo), nickel (Ni), vanadium (V), lead (Pb), strontium (Sr), barium (Ba), uranium (U), arsenic (As), and rare earth elements (REE) in abundance. High uranium/thorium (U/Th) ratios (U/Th>1) indicated that mineralization was mainly influenced by the hydrothermal process. The ,U value was above 1.9, showing a reducing sedimentary condition. The REE patterns showed high enrichment in light rare earth elements (LREE) (heavy rare earth elements (HREE) (LREE/HREE=5,17), slightly negative europium (Eu) and cerium (Ce) anomalies (,Eu=0.81,0.93), and positive Ce anomalies (,Ce=0.76,1.12). PGE abundance was characterized by the PGE-type distribution patterns, enriching platinum (Pt), palladium (Pd), ruthenium (Ru) and osmium (Os). The Pt/Pd ratio was 0.8, which is close to the ratios of seawater and ultramafic rocks. All of these geochemical features suggest that the mineralization was triggered by hydrothermal activity in an extensional setting in the context of break-up of the Rodinian supercontinent. [source] |