nitro-L-arginine Methyl Ester (nitro-l-arginine + methyl_ester)

Distribution by Scientific Domains
Distribution within Medical Sciences

Terms modified by nitro-L-arginine Methyl Ester

  • nitro-l-arginine methyl ester hydrochloride

  • Selected Abstracts


    Thaliporphine protects ischemic and ischemic-reperfused rat hearts via an NO-dependent mechanism

    DRUG DEVELOPMENT RESEARCH, Issue 3 2001
    Li-Man Hung
    Abstract In ischemia or ischemia-reperfusion (I/R), nitric oxide (NO) can potentially exert several beneficial effects. Thaliporphine, a natural alkaloid with Ca2+ channel-activating and Na+/K+ channel-blocking activities, increased NO levels and exerted cardioprotective action in ischemic or I/R rats. The role of NO in the cardioprotective actions of thaliporphine was assessed. The severity of rhythm disturbances and mortality in anesthetized rats with either coronary artery occlusion for 30 min, or 5 min followed by 30-min reperfusion, were monitored and compared in thaliporphine- vs. placebo-treated groups. Thaliporphine treatment significantly increased NO and decreased lactate dehydrogenase (LDH) levels in the blood during the end period of ischemia or I/R. These changes in NO and LDH levels by thaliporphine were associated with a reduction in the incidence and duration of ventricular tachycardia (VT) and ventricular fibrillation (VF) during ischemic or I/R period. The mortality of animals was also completely prevented by 1 × 10,8 moles/kg of thaliporphine. In animals subjected to 4 h of left coronary artery occlusion, 1 × 10,7 moles/kg of thaliporphine dramatic reduced cardiac infarct zone from 46 ± 6% to 7.1 ± 1.9%. Inhibition of NO synthesis with 3.7 × 10,6 moles/kg of N, -nitro-L-arginine methyl ester (L-NAME) abolished the beneficial effects of thaliporphine during 30 min or 4 h myocardial ischemia. However, the antiarrhythmic activity and mortality reduction efficacy of thaliporphine during reperfusion after 5 min of ischemia was only partially antagonized by L-NAME. These results showed that thaliporphine efficiently exerted the cardioprotections either in acute or prolonged coronary artery occlusion or occlusion-reperfusion situations. The fact that thaliporphine induced cardioprotective effects were abrogated by L-NAME indicates that NO is an important mediator for the cardioprotective effects of thaliporphine in acute or prolonged ischemia, whereas antioxidant activities may contribute to the protection of I/R injury. Drug Dev. Res. 52:446,453, 2001. © 2001 Wiley-Liss, Inc. [source]


    Nitric oxide synthase inhibition in Thoroughbred horses augments O2 extraction at rest and submaximal exercise, but not during short-term maximal exercise

    EQUINE VETERINARY JOURNAL, Issue S36 2006
    M. MANOHAR
    Summary Reason for performing study: Work is required to establish the role of endogenous nitric oxide (NO) in metabolism of resting and exercising horses. Objectives: To examine the effects of NO synthase inhibition on O2 extraction and anaerobic metabolism at rest, and during submaximal and maximal exertion. Methods: Placebo and NO synthase inhibition (with N,-nitro-L-arginine methyl ester [l -NAME] administered at 20 mg/kg bwt i.v.) studies were performed in random order, 7 days apart on 7 healthy, exercise-trained Thoroughbred horses at rest and during incremental exercise leading to 120 sec of maximal exertion at 14 m/sec on a 3.5% uphill grade. Results: At rest, NO synthase inhibition significantly augmented the arterial to mixed-venous blood O2 content gradient and O2 extraction as mixed-venous blood O2 tension and saturation decreased significantly. While NO synthase inhibition did not affect arterial blood-gas tensions in exercising horses, the exercise-induced increment in haemoglobin concentration and arterial O2 content was attenuated. In the l -NAME study, during submaximal exercise, mixed-venous blood O2 tension and haemoglobin-O2 saturation decreased to a greater extent causing O2 extraction to increase significantly. During maximal exertion, arterial hypoxaemia, desaturation of haemoglobin and hypercapnia of a similar magnitude developed in both treatments. Also, the changes in mixed-venous blood O2 tension and haemoglobin-O2 saturation, arterial to mixed-venous blood O2 content gradient, O2 extraction and markers of anaerobic metabolism (lactate and ammonia production, and metabolic acidosis) were not different from those in the placebo study. Conclusion: Endogenous NO production augments O2 extraction at rest and during submaximal exertion, but not the during short-term maximal exercise. Also, NO synthase inhibition does not affect anaerobic metabolism at rest or during exertion. Potential relevance: It is unlikely that endogenous NO release modifies aerobic or anaerobic metabolism in horses performing short-term maximal exertion. [source]


    The Effect of Progesterone on Coronary Blood Flow in Anaesthetized Pigs

    EXPERIMENTAL PHYSIOLOGY, Issue 1 2001
    C. Molinari
    The present study was designed to investigate the effect of progesterone on the coronary circulation and to determine the mechanisms involved. In pigs anaesthetized with sodium pentobarbitone, changes in left circumflex or anterior descending coronary blood flow caused by intravenous infusion of progesterone at constant heart rate and arterial blood pressure were assessed using an electromagnetic flowmeter. In 14 pigs, infusion of 1 mg h,1 of progesterone caused an increase in coronary blood flow without affecting left ventricular dP/dtmax (rate of change of left ventricular systolic pressure) and filling pressures of the heart. In a further four pigs, this vasodilatory coronary effect was enhanced by graded increases in the dose of the hormone of between 1, 2 and 3 mg h,1. The mechanisms of the above response were studied in the 14 pigs by repeating the experiment after haemodynamic variables had returned to the control values observed before infusion. In six pigs, blockade of muscarinic cholinoceptors and adrenoceptors with atropine, propranolol and phentolamine did not affect the coronary vasodilatation caused by progesterone. In the remaining eight pigs, this response was abolished by intracoronary injection of N, -nitro-L-arginine methyl ester (L-NAME) even when performed after reversing the increase in arterial blood pressure and coronary vascular resistance caused by L-NAME with continuous intravenous infusion of papaverine. The present study showed that intravenous infusion of progesterone primarily caused coronary vasodilatation. The mechanism of this response was shown to involve the endothelial release of nitric oxide. [source]


    Role of the nitric oxide on diazoxide-induced relaxation of the calf cardiac vein and coronary artery during cooling

    FUNDAMENTAL & CLINICAL PHARMACOLOGY, Issue 3 2009
    K. E. Atalik
    Abstract The effects of cooling (to 28 °C) on the vasodilation induced by diazoxide (10,9,3 × 10,4 m) on carbachol-pre-contracted calf cardiac vein and coronary artery and the role of nitric oxide in these effects were analyzed. Diazoxide produced concentration-dependent relaxation of calf cardiac vein and coronary artery rings pre-contracted with carbachol (10,6 m). During cooling, the pIC50 values, but not the maximal responses, to diazoxide were significantly lower than at 37 °C in both preparations. Cooling to 28 °C in the presence of NG -nitro-L-arginine methyl ester (10,4 m) did not modify the effect of temperature both in cardiac vein and coronary artery. These results suggest that cooling-induced changes of diazoxide in calf cardiac vein and coronary artery are independent of nitric oxide. [source]


    Decreased hepatic nitric oxide production contributes to the development of rat sinusoidal obstruction syndrome

    HEPATOLOGY, Issue 4 2003
    Laurie D. Deleve M.D., Ph.D.
    This study examined the role of decreased nitric oxide (NO) in the microcirculatory obstruction of hepatic sinusoidal obstruction syndrome (SOS). SOS was induced in rats with monocrotaline. Monocrotaline caused hepatic vein NO to decrease by 30% at 24 hours and by 70% at 72 hours; this decrease persisted throughout late SOS. NG -nitro-L-arginine methyl ester (L-NAME), an inhibitor of NO synthase, exacerbated monocrotaline toxicity, whereas V-PYRRO/NO, a liver-selective NO donor prodrug, restored NO levels, preserved sinusoidal endothelial cell (SEC) integrity and sinusoidal perfusion as assessed by in vivo microscopy and electron microscopy, and prevented clinical and histologic evidence of SOS. NO production in vitro by SEC and Kupffer cells, the 2 major liver cell sources of NO, decreases largely in parallel with loss of cell viability after exposure to monocrotaline. Increased matrix metalloproteinase (MMP) activity increases early on in SOS and this increase in activity has been implicated in initiating SOS. Infusion of V-PYRRO-NO prevented the monocrotaline-induced increase in MMP-9. In conclusion, decreased hepatic NO production contributes to the development of SOS. Infusion of an NO donor preserves SEC integrity and prevents development of SOS. These findings show that a decrease in NO contributes to SOS by allowing up-regulation of MMP activity, loss of sinusoidal integrity, and subsequent disruption of sinusoidal perfusion. (Hepatology 2003;38:900,908). [source]


    Role of Endothelium/Nitric Oxide and Cyclic AMP in Isoproterenol Potentiation of 17ß-Estradiol-Mediated Vasorelaxation

    JOURNAL OF CARDIAC SURGERY, Issue 6 2002
    HY Chan
    Estrogen exerts vasorelaxation and cardiac protection via multiple cellular mechanisms. Estrogen modifies vasodilatation induced by certain relaxants such as ß-adrenoceptor agonists. However, little is known whether low concentrations of ß-adrenoceptor agonists would also influence the acute relaxant response to estrogen. The present study was designed to investigate the synergistic interaction between isoproterenol and 17ß-estradiol, and to study the role of endothelium and cyclic AMP-dependent pathway in this interaction. Changes in vessel tone of the isolated rat mesenteric artery rings were measured by force-displacement Grass transducer. In 9,11-dideoxy-11,, 9,-epoxy-methanoprostaglandin F2, - preconstricted endothelium-intact rings, 17ß-estradiol induced concentration-dependent relaxation with pD2 of 5.074 ± 0.043. Pretreatment of endothelium-intact rings with isoproterenol (1-3 × 10 -9 M, 1-h incubation time) significantly enhanced 17,-estradiol-induced relaxation. Longer incubation (2.5 h) did not produce further amplifying effect. This effect was inhibited by Rp-cGMPS triethylamine (3 × 10 -6 M), and disappeared in the presence of 3 × 10 -5 M NG -nitro-L-arginine methyl ester or in the endothelium-denuded rings. The effect of isoproterenol was partially antagonized by propranolol (3 × 10 -6 M), ICI 118,551 (3 × 10 -6 M) but not by atenolol (10 -5 M). None of three ,-adrenoceptor antagonists affected 17ß-estradiol-induced relaxation in the absence of isoproterenol. Rp-cAMPS triethylamine (3 × 10 -6 M) abolished the effect of isoproterenol. Besides, exposure to 3 × 10 -9 M forskolin for 1 h also potentiated the relaxant response to 17,-estradiol. In summary, this isoproterenol enhancement was dependent on the presence of endothelium and abolished by L-NAME via a ,2 -adrenoceptor-mediated cyclic AMP-dependent mechanism. These data also indicate the possible existence of cyclic AMP-dependent nitric oxide-producing pathway in the regulation of the vascular response to vasodilators. (supported by UPGC Direct Grant) [source]


    Detrimental effects of nitric oxide inhibition on hepatic encephalopathy in rats with thioacetamide-induced fulminant hepatic failure: Role of nitric oxide synthase isoforms

    JOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, Issue 7 2006
    Chi-Jen Chu
    Abstract Background:, Hepatic encephalopathy is a complex neuropsychiatric syndrome. A previous study showed that chronic nitric oxide (NO) inhibition aggravated the severity of encephalopathy in thioacetamide (TAA)-treated rats. The present study investigated the relative contribution of NO synthase (NOS) isoforms on the severity of hepatic encephalopathy in TAA-treated rats. Method:, Fulminant hepatic failure was induced in male Sprague-Dawley rats by intraperitoneal injection of TAA (350 mg/kg/day) for 3 days. Rats were divided into three groups to receive N, -nitro-L-arginine methyl ester (L-NAME, a non-selective NOS inhibitor, 25 mg/kg/day in tap water), L-canavanine (an inducible NOS inhibitor, 100 mg/kg/day via intraperitoneal injection) or normal saline (N/S) from 2 days prior to TAA administration and lasting for 5 days. Severity of encephalopathy was assessed by the counts of motor activity. Plasma levels of tumor necrosis factor-, (TNF- ,) were determined by enzyme-linked immunosorbent assay (ELISA), and total bilirubin, alanine aminotransferase (ALT) and creatinine were determined by colorimetric assay. Results:, Compared with L-canavanine or N/S-treated rats (0% and 4%, respectively), the mortality rate was significantly higher in rats receiving L-NAME administration (29%, P < 0.005). Inhibition of NO created detrimental effects on the counts of motor activities (P < 0.05). Rats treated with L-NAME had significantly higher plasma levels of total bilirubin, ALT, creatinine and TNF- , as compared with rats treated with L-canavanine or N/S (P < 0.01). Conclusion:, Chronic L-NAME administration, but not L-canavanine, had detrimental effects on the severity of hepatic damage and motor activities in TAA-treated rats. These results suggest that constitutive NOS activities play a major protective role in rats with fulminant hepatic failure. [source]


    Red wine polyphenolic compounds inhibit tracheal smooth muscle contraction during allergen-induced hyperreactivity of the airways

    JOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 5 2007
    Sona Franova
    The aims of the study were to investigate the short and long-term effects of Provinol (red wine polyphenolic compounds) on tracheal smooth muscle reactivity using an in-vitro model of ovalbumin-induced airway inflammation in guinea-pig trachea, and to evaluate the role of nitric oxide (NO) in the bronchodilatory effect of Provinol. The amplitude of tracheal smooth muscle contraction in response to mediators of bronchoconstriction ,histamine (10 nM-1 mM), acetylcholine (10 nM-1 mM) and to allergen (ovalbumin 10,5 -10,3 g mL,1) was used as a parameter of tracheal smooth muscle reactivity. To test the short-term effects of Provinol, isolated tracheal strips were pre-treated for 30 min with Provinol (10,4mg mL,1) alone or in combination with N, -nitro-L-arginine methyl ester (L-NAME; 10,6mol L,1). To test the long-term effects of Provinol, isolated tracheal strips were prepared from guinea pigs that had been treated for 14 days with Provinol (20mg kg,1 per day) alone or in combination with L-NAME (40 mg kg,1 per day). Incubation of tracheal smooth muscle with Provinol decreased the amplitude of contraction in response to ovalbumin, histamine and acetylcholine. The non-selective NO synthase inhibitor L-NAME partially abolished the effect of Provinol on acetylcholine and ovalbumin-induced but not histamine-induced bronchoconstriction. A similar profile was observed after 14 days' oral administration of Provinol. In conclusion, Provinol inhibited the allergen- and spasmogen-induced contraction of tracheal smooth muscle in ovalbumin-sensitized guinea pigs via a mechanism that was mediated at least partially through the metabolism of NO. [source]


    Acute remote ischemic preconditioning II: The role of nitric oxide

    MICROSURGERY, Issue 6 2002
    Markus V. Küntscher M.D.
    The purpose of this study was to determine whether nitric oxide (NO) plays a role in the mechanism of acute "classic" as well as acute remote ischemic preconditioning (IP). Thirty-two male Wistar rats were divided into five experimental groups. The rat cremaster flap in vivo microscopy model was used for assessment of ischemia/reperfusion injury. In the control group (CG, n = 8), a 2-hr flap ischemia was induced after preparation of the cremaster muscle. The animals of group NO (n = 6) received 500 nmol/kg of the NO-donor spermine/nitric oxide complex (Sper/NO) intravenously 30 min prior to ischemia. The group LN + P (L-NAME + preclamping, n = 6) received 10 mg/kg N,-nitro-L-arginine methyl ester (L-NAME) intravenously before preclamping of the flap pedicle (10-min cycle length, 30-min reperfusion). L-NAME (10 mg/kg) was administered in group LN + T (L-NAME + tourniquet, n = 6) before ischemia of the right hindlimb was induced, using a tourniquet for 10 min after flap elevation. The limb was then reperfused for 30 min. Thereafter, flap ischemia was induced in each group as in group CG. In vivo microscopy was performed after 1 hr of flap reperfusion in each animal. Group NO demonstrated a significantly higher red blood cell velocity (RBV) in the first-order arterioles and capillaries, a higher capillary flow, and a decreased number of leukocytes adhering to the endothelium (stickers) of the postcapillary venules by comparison to all other groups (P < 0.05). The average capillary RBV and capillary flow were still higher in the CG than in the groups receiving L-NAME (P < 0.05). The data show that NO plays an important role in the mechanism of both acute "classic" as well as acute remote IP, since the administration of a NO-donor previous to ischemia simulates the effect of IP, whereas the nonspecific blocking of NO synthesis by L-NAME abolishes the protective effect of flap preconditioning. © 2002 Wiley-Liss, Inc. MICROSURGERY 22:227-231 2002 [source]


    Prostaglandin E1 at clinically relevant concentrations inhibits aggregation of platelets under synergic interaction with endothelial cells

    ACTA ANAESTHESIOLOGICA SCANDINAVICA, Issue 8 2002
    T. Koga
    Background: The inhibitory effect of prostaglandin E1 (PGE1) on platelet aggregation is considered an important characteristic of this agent. However, the concentration of PGE1 to inhibit aggregation in vitro is higher than those of clinical use (1 ng/ml). To clarify whether PGE1 at clinically relevant concentrations inhibits aggregation under synergic action with endothelial cell-derived factors (nitric oxide and prostacyclin), we evaluated the minimum effective concentration of PGE1 to enhance the anti-aggregating activity of endothelial cells. Methods: Inhibitory effects of PGE1 and/or the incubation buffer from cultured porcine aortic endothelial (PAE) cells on human platelet aggregation induced by 2 µg/ml collagen were examined by turbidimetry. Results: PGE1 concentration-dependently (>3 ng/ml) inhibited aggregation: the incubation buffer from PAE cells stimulated by bradykinin also inhibited aggregation. Bradykinin concentration-dependently increased the anti-aggregating activity of the PAE incubation buffer. The half-maximum effective concentration of bradykinin to inhibit aggregation (95.4±22.3 nM) was significantly decreased to 10.3±2.5 nM by 0.1 ng/ml PGE1 and to 0.9±0.5 nM by 1 ng/ml PGE1, respectively. These indicated that PGE1 (=0.1 ng/ml) inhibits aggregation through synergism with endothelial cells. The synergic effect of PGE1 and the anti-aggregating activity of the PAE cells preincubated with 10 µM indomethacin for 30 min was more potent than that of these cells preincubated with 1 mM NG -nitro-L-arginine methyl ester. This suggested that the interaction of PGE1 with endothelial cell-derived nitric oxide is more powerful than that with endothelial cell-derived prostacyclin. Conclusion: Prostaglandin E1 (=0.1 ng/ml) inhibited platelet aggregation under synergic interaction with endothelial cells. [source]


    The Effect of Korean Red Ginseng Extract on the Relaxation Response in Isolated Rabbit Vaginal Tissue and Its Mechanism

    THE JOURNAL OF SEXUAL MEDICINE, Issue 9 2008
    Sun-Ouck Kim MD
    ABSTRACT Introduction., Ginseng is an herbal medicine with a variety of biological activities. Aim., The purpose of this study was to investigate the effect of Korean red ginseng (KRG) extract on the relaxation response in isolated rabbit vaginal tissue and its mechanism as a potential therapeutic agent for female sexual dysfunction. Method., Strips of rabbit vagina were mounted in organ chambers to measure isometric tension. After the strips were precontracted with phenylephrine, the contractile responses to KRG extract (1,20 mg/mL), nitric oxide inhibitor (N[omega]-nitro-L-arginine methyl ester [L-NAME]), an inhibitor of soluble guanylate cyclase (methylene blue), an inhibitor of Ca2+ -activated K+ channels (tetraethylammonium [TEA]), and an adenosine triphosphate (ATP)-sensitive K+ channel blocker (glybenclamide) were examined. Main Outcome Measures., The relaxation of the vaginal tissue strip was assessed after treating KRG extract or other chemicals. Results., KRG (1,20 mg/mL) extract relaxed the vaginal tissue strip in a dose-dependent manner up to 85%. The relaxation effect was significantly inhibited by L-NAME (30 µM) and methylene blue (30 µM) (P < 0.05). In addition, KRG inhibited the contraction induced by depolarization with 10, 20, and 40 mM KCl. The KRG-induced relaxation effect was significantly inhibited by TEA (300 µM) (P < 0.05), and not by glybenclamide (30 µM). Conclusions., These data show that KRG extract has a relaxing effect on rabbit vaginal smooth muscle tissue. These effects might be mediated partly through the NO pathway and hyperpolarization via Ca2+ -activated K+ channels. Kim S-O, Kim MK, Lee H-S, Park JK, and Park K. The effect of Korean red ginseng extract on the relaxation response in isolated rabbit vaginal tissue and its mechanism. J Sex Med 2008;5:2079,2084. [source]


    Glutamate receptors on myelinated spinal cord axons: I. GluR6 kainate receptors,

    ANNALS OF NEUROLOGY, Issue 2 2009
    Mohamed Ouardouz PhD
    Objective The deleterious effects of glutamate excitotoxicity are well described for central nervous system gray matter. Although overactivation of glutamate receptors also contributes to axonal injury, the mechanisms are poorly understood. Our goal was to elucidate the mechanisms of kainate receptor,dependent axonal Ca2+ deregulation. Methods Dorsal column axons were loaded with a Ca2+ indicator and imaged in vitro using confocal laser-scanning microscopy. Results Activation of glutamate receptor 6 (GluR6) kainate receptors promoted a substantial increase in axonal [Ca2+]. This Ca2+ accumulation was due not only to influx from the extracellular space, but a significant component originated from ryanodine-dependent intracellular stores, which, in turn, depended on activation of L-type Ca2+ channels: ryanodine, nimodipine, or nifedipine blocked the agonist-induced Ca2+ increase. Also, GluR6 stimulation induced intraaxonal production of nitric oxide (NO), which greatly enhanced the Ca2+ response: quenching of NO with intraaxonal (but not extracellular) scavengers, or inhibition of neuronal NO synthase with intraaxonal N,-nitro-L-arginine methyl ester, blocked the Ca2+ increase. Loading axons with a peptide that mimics the C-terminal PDZ binding sequence of GluR6, thus interfering with the coupling of GluR6 to downstream effectors, greatly reduced the agonist-induced axonal Ca2+ increase. Immunohistochemistry showed GluR6/7 clusters on the axolemma colocalized with neuronal NO synthase and Cav1.2. Interpretation Myelinated spinal axons express functional GluR6-containing kainate receptors, forming part of novel signaling complexes reminiscent of postsynaptic membranes of glutamatergic synapses. The ability of such axonal "nanocomplexes" to release toxic amounts of Ca2+ may represent a key mechanism of axonal degeneration in disorders such as multiple sclerosis where abnormal accumulation of glutamate and NO are known to occur. Ann Neurol 2009 [source]


    Tamoxifen dilates porcine coronary arteries: roles for nitric oxide and ouabain-sensitive mechanisms

    BRITISH JOURNAL OF PHARMACOLOGY, Issue 6 2006
    H S Leung
    Background and purpose: Experiments were designed to determine the mechanism of the relaxation induced by tamoxifen in porcine coronary arteries at the tissue, cellular and molecular levels. Experimental approach: Porcine left circumflex coronary arteries were isolated and isometric tension was measured. [Ca2+]i in native endothelial cells of intact arteries was determined by a calcium fluorescence imaging technique and eNOS ser1177 phosphorylation was assayed by Western blotting. Key results: Tamoxifen induced an endothelium-dependent relaxation that was antagonized by ICI 182,780 and abolished by NG -nitro-L-arginine methyl ester (L-NAME) or 1H-[1,2,4]oxadizolo[4,3-a]quinoxalin-1-one (ODQ). L-Arginine reversed the effect of L-NAME while indomethacin was without effect. Tamoxifen-induced relaxation was attenuated by charybdotoxin (CTX) plus apamin, ouabain or by incubation in a K+ -free solution. Moreover, tamoxifen triggered extracellular Ca2+ -dependent increases in endothelial [Ca2+]i and this effect was abolished by ICI 182,780. Endothelium-independent relaxation to sodium nitroprusside was also inhibited by ouabain or in a K+ -free solution. Furthermore, tamoxifen increased endothelial nitric oxide synthase (eNOS) phosphorylation at Ser-1177 and ICI 182,780 prevented this effect. Conclusions and Implications: The present results suggest that tamoxifen mainly induces endothelium-dependent relaxation and that endothelial nitric oxide (NO) is the primary mediator of this effect. NO-dependent responses may result from elevated [Ca2+]i in endothelial cells; an effect abolished by ICI 182,780. NO activates Na+/K+ -ATPase in vascular smooth muscle, leading to relaxation. These results suggest that tamoxifen is able to modulate eNOS phosphorylation directly. British Journal of Pharmacology (2006) 149, 703,711. doi:10.1038/sj.bjp.0706921 [source]


    Nitric Oxide Synthesis Inhibition Attenuates Conditioned Reinstatement of Ethanol-Seeking, but Not the Primary Reinforcing Effects of Ethanol

    ALCOHOLISM, Issue 8 2004
    Xiu Liu
    Background: Nitric oxide (NO) signaling has been implicated in regulating aspects of the reinforcing and addictive actions of cocaine. These experiments were designed to examine whether NO-dependent neurotransmission also participates in mediating the addictive actions of another drug of abuse, ethanol, with emphasis on both the primary reinforcing effects of ethanol and the incentive motivational effects of ethanol-related contextual stimuli. Methods: Male Wistar rats were operantly trained to orally self-administer 10% (w/v) ethanol in daily 30-min sessions and to associate distinct discriminative stimuli with the availability of ethanol (S+) versus nonreward (S,). Rats were treated with the NO synthase inhibitor NG -nitro-l-arginine methyl ester (l-NAME; 0, 10, or 40 mg/kg intraperitoneally) 30 min before self-administration tests that were conducted after establishment of stable levels of daily ethanol intake and conditioned reinstatement tests that were performed after extinction of ethanol-maintained operant responding. Results: l-NAME did not alter the primary reinforcing effects of ethanol in self-administration tests. In contrast, l-NAME dose-dependently attenuated the recovery of extinguished responding induced by the ethanol S+ in the absence of ethanol availability during reinstatement tests. Conclusions: These results suggest that the NO system does not play a role in behavior reinforced directly by ethanol. However, the results implicate NO-dependent neurotransmission in alcohol-seeking responses elicited by drug-related contextual stimuli. [source]


    Endothelin A receptors mediate relaxation of guinea pig internal anal sphincter through cGMP pathway

    NEUROGASTROENTEROLOGY & MOTILITY, Issue 9 2010
    S.-c. Huang
    Abstract Background, Endothelin (ET) modulates motility of the internal anal sphincter through unclear receptor subtypes. Methods, We measured relaxation of guinea pig internal anal sphincter strips caused by ET-related peptides and binding of 125I-ET-1 to cell membranes prepared from the internal anal sphincter muscle. Visualization of 125I-ET-1 binding sites in tissue was performed by autoradiography. Key Results , In the guinea pig internal anal sphincter, ET-1 caused a marked relaxation insensitive to tetrodotoxin, atropine, or ,-conotoxin GVIA. ET-2 was as potent as ET-1. ET-3 caused a mild relaxation. The relative potencies for ETs to cause relaxation were ET-1 = ET-2 > ET-3. The ET-1-induced relaxation was inhibited by BQ-123, an ETA antagonist, but not by BQ-788, an ETB antagonist. These indicate that ETA receptors mediate the relaxation. The relaxant response of ET-1 was attenuated by LY 83583, KT 5823, Rp-8CPT-cGMPS, tetraethyl ammonium, 4-aminopyridine and N(omega)-nitro-l-arginine, but not significantly affected by NG -nitro-l-arginine methyl ester, NG -methyl-l-arginine, charybdotoxin, apamin, KT 5720, and Rp-cAMPS. These suggest the involvement of cyclic guanosine 3,,5,-cyclic monophosphate (cGMP), and potassium channels. Autoradiography localized 125I-ET-1 binding to the internal anal sphincter. Binding of 125I-ET-1 to the cell membranes prepared from the internal anal sphincter revealed the presence of two subtypes of ET receptors, ETA and ETB receptors. Conclusions & Inferences, Taken together, these results demonstrate that ETA receptors mediate relaxation of guinea pig internal anal sphincter through the cGMP pathway. [source]