Home About us Contact | |||
Nitrogen Pools (nitrogen + pool)
Selected AbstractsSoil Nitrogen Pools Associated with Revegetation of Disturbed Sites in the Lake Tahoe AreaRESTORATION ECOLOGY, Issue 2 2002V. P. Claassen Abstract Thin, poorly developed soils in the high elevation, summer-dry environment near Lake Tahoe, California are easily disturbed by anthropogenic impacts. Subsoils and parent materials that are exposed by vegetation removal and topsoil erosion or by burial during construction activities are difficult to revegetate and may continue to erode for decades after disturbance. The resulting sediment loads contribute to decreased water quality in local watersheds and to the loss of clarity in Lake Tahoe. Field observations suggest that soil disturbance often results in depletion of soil nitrogen (N) reserves and that the remaining substrates may be unable to provide adequate N for revegetation. To quantify the levels of soil N that are associated with higher levels of percent plant cover on previously disturbed soils in the Lake Tahoe area, a basin-wide survey and a second paired site study were conducted. Results indicate that extractable ammonium and nitrate levels correlate poorly with percent vegetative cover, whereas the correlations of anaerobically mineralizable N and total N are stronger and account for nearly 50% of the variability in plant cover data. Sites with plant cover measuring greater than 40% are associated with total soil N levels of about 1,200 kg N/ha and anaerobic mineralizable N levels of about 26 kg N/ha. Despite high concentrations of N in the surface soils, a large fraction of the N in the 0- to 50-cm profile occurs below 30 cm, when measured on a landscape basis. [source] Extreme hydrochemical conditions in natural microcosms entombed within Antarctic iceHYDROLOGICAL PROCESSES, Issue 2 2004Martyn Tranter Abstract Cryoconite holes are near-vertical tubes that form in the surface of glaciers when solar-heated debris melts into the ice. Those that form in the McMurdo Dry Valleys of Antarctica are distinctive, in that they have ice lids and are closed to the atmosphere for periods of years to decades. Photoautotrophs and heterotrophs grow within this closed environment, perturbing the poorly buffered water chemistry, yet maintaining the potential for photosynthesis. Microbial excretion and decomposition of organic matter produces dissolved organic carbon (DOC): dissolved inorganic carbon ratios of ,1:2. Much of the dissolved nitrogen pool (80,100%) exists as dissolved organic nitrogen (DON). The DON:DOC ratio is ,1:11 (mol/mol), typical of organic particulate material at the Earth's surface. The combination of photoautotrophy, heterotrophy and weak chemical buffering within these microcosms promotes values of pH, pCO2, O2 saturation and percentage total dissolved nitrogen as DON that reach 10·99, 10,7·6 atm, 160% and 100% respectively, which are a unique combination among the surface waters on Earth. These ice-sealed cryoconite holes could be important analogues of refugia on Snowball Earth and other icy planets. Copyright © 2004 John Wiley & Sons, Ltd. [source] Molecular characterization, function and regulation of ammonium transporters (Amt) and ammonium-metabolizing enzymes (GS, NADP-GDH) in the ectomycorrhizal fungus Hebeloma cylindrosporumMOLECULAR MICROBIOLOGY, Issue 2 2003Arnaud Javelle Summary External hyphae, which play a key role in nitrogen nutrition of trees, are considered as the absorbing structures of the ectomycorrhizal symbiosis. Here, we have cloned and characterized Hebeloma cylindrosporum AMT1, GLNA and GDHA genes, which encode a third ammonium transporter, a glutamine synthetase and an NADP-dependent glutamate dehydrogenase respectively. Amt1 can fully restore the pseudohyphal growth defect of a Saccharomyces cerevisiae mep2 mutant, and this is the first evidence that a heterologous member of the Mep/Amt family complements this dimorphic change defect. Dixon plots of the inhibition of methylamine uptake by ammonium indicate that Amt1 has a much higher affinity than the two previously characterized members (Amt2 and Amt3) of the Amt/Mep family in H. cylindrosporum. We also identified the intracellular nitrogen pool(s) responsible for the modulation of expression of AMT1, AMT2, AMT3, GDHA and GLNA. In response to exogenously supplied ammonium or glutamine, AMT1, AMT2 and GDHA were downregulated and, therefore, these genes are subjected to nitrogen repression in H. cylindrosporum. Exogenously supplied nitrate failed to induce a downregulation of the five mRNAs after transfer of mycelia from a N-starved condition. Our results demonstrate that glutamine is the main effector for AMT1 and AMT2 repression, whereas GDHA repression is controlled by intracellular ammonium, independently of the intracellular glutamine or glutamate concentration. Ammonium transport activity may be controlled by intracellular NH4+. AMT3 and GLNA are highly expressed but not highly regulated. A model for ammonium assimilation in H. cylindrosporum is presented. [source] ,15N of zooplankton species in subarctic lakes in northern Sweden: effects of diet and trophic fractionationFRESHWATER BIOLOGY, Issue 5 2004J. Karlsson Summary 1. To assess the use of stable nitrogen isotopes (,15N) for reconstructing trophic relationships in planktonic food webs, crustacean zooplankton species and pelagic dissolved and particulate matter were analysed in 14 subarctic lakes in northern Sweden. The lakes are situated along an altitudinal gradient and show a substantial variation in nutrient content and energy mobilization by bacterioplankton and phytoplankton. 2. The ,15N of dissolved and particulate matter was comparatively low, suggesting efficient N recycling and low losses of depleted N from the pelagic zone of these unproductive lakes. 3. Copepods had a systematically higher ,15N than cladocerans, with an average difference of 3.1,4.9, within lakes, implying different trophic positions of the two groups. Comparisons of nitrogen pools and energy fluxes suggest that the low cladoceran ,15N was a result of feeding on bacteria. 4. The difference in ,15N between copepods and cladocerans declined with decreasing bacterioplankton production among lakes, due either to increasing trophic isotope fractionation or decreasing relative importance of bacteria in the diet of cladocerans. [source] Region-specific assessment of greenhouse gas mitigation with different manure management strategies in four agroecological zonesGLOBAL CHANGE BIOLOGY, Issue 12 2009SVEN G. SOMMER Abstract Livestock farming systems are major sources of trace gases contributing to emissions of the greenhouse gases (GHG) nitrous oxide (N2O) and methane (CH4), i.e. N2O accounts for 10% and CH4 for 30% of the anthropogenic contributions to net global warming. This paper presents scenario assessments of whole-system effects of technologies for reducing GHG emissions from livestock model farms using slurry-based manure management. Changes in housing and storage practice, mechanical separation, and incineration of the solid fraction derived from separation were evaluated in scenarios for Sweden, Denmark, France, and Italy. The results demonstrated that changes in manure management can induce significant changes in CH4 and N2O emissions and carbon sequestration, and that the effect of introducing environmental technologies may vary significantly with livestock farming practice and interact with climatic conditions. Shortening the in-house manure storage time reduced GHG emissions by 0,40%. The largest GHG reductions of 49 to, in one case, 82% were obtained with a combination of slurry separation and incineration, the latter process contributing to a positive GHG balance of the system by substituting fossil fuels. The amount and composition of volatile solids (VS) and nitrogen pools were main drivers in the calculations performed, and requirements to improve the assessment of VS composition and turnover during storage and in the field were identified. Nevertheless, the results clearly showed that GHG emission estimates will be unrealistic, if the assumed manure management or climatic conditions do not properly represent a given country or region. The results also showed that the mitigation potential of specific manure management strategies and technologies varied depending on current management and climatic conditions. [source] Vegetation responses in Alaskan arctic tundra after 8 years of a summer warming and winter snow manipulation experimentGLOBAL CHANGE BIOLOGY, Issue 4 2005C.-H. A. Wahren Abstract We used snow fences and small (1 m2) open-topped fiberglass chambers (OTCs) to study the effects of changes in winter snow cover and summer air temperatures on arctic tundra. In 1994, two 60 m long, 2.8 m high snow fences, one in moist and the other in dry tundra, were erected at Toolik Lake, Alaska. OTCs paired with unwarmed plots, were placed along each experimental snow gradient and in control areas adjacent to the snowdrifts. After 8 years, the vegetation of the two sites, including that in control plots, had changed significantly. At both sites, the cover of shrubs, live vegetation, and litter, together with canopy height, had all increased, while lichen cover and diversity had decreased. At the moist site, bryophytes decreased in cover, while an increase in graminoids was almost entirely because of the response of the sedge Eriophorum vaginatum. These community changes were consistent with results found in studies of responses to warming and increased nutrient availability in the Arctic. However, during the time period of the experiment, summer temperature did not increase, but summer precipitation increased by 28%. The snow addition treatment affected species abundance, canopy height, and diversity, whereas the summer warming treatment had few measurable effects on vegetation. The interannual temperature fluctuation was considerably larger than the temperature increases within OTCs (<2°C), however. Snow addition also had a greater effect on microclimate by insulating vegetation from winter wind and temperature extremes, modifying winter soil temperatures, and increasing spring run-off. Most increases in shrub cover and canopy height occurred in the medium snow-depth zone (0.5,2 m) of the moist site, and the medium to deep snow-depth zone (2,3 m) of the dry site. At the moist tundra site, deciduous shrubs, particularly Betula nana, increased in cover, while evergreen shrubs decreased. These differential responses were likely because of the larger production to biomass ratio in deciduous shrubs, combined with their more flexible growth response under changing environmental conditions. At the dry site, where deciduous shrubs were a minor part of the vegetation, evergreen shrubs increased in both cover and canopy height. These changes in abundance of functional groups are expected to affect most ecological processes, particularly the rate of litter decomposition, nutrient cycling, and both soil carbon and nitrogen pools. Also, changes in canopy structure, associated with increases in shrub abundance, are expected to alter the summer energy balance by increasing net radiation and evapotranspiration, thus altering soil moisture regimes. [source] Shrubs as ecosystem engineers in a coastal dune: influences on plant populations, communities and ecosystemsJOURNAL OF VEGETATION SCIENCE, Issue 5 2010J. Hall Cushman Abstract Question: How do two shrubs with contrasting life-history characteristics influence abundance of dominant plant taxa, species richness and aboveground biomass of grasses and forbs, litter accumulation, nitrogen pools and mineralization rates? How are these shrubs , and thus their effects on populations, communities and ecosystems , distributed spatially across the landscape? Location: Coastal hind-dune system, Bodega Head, northern California. Methods: In each of 4 years, we compared vegetation, leaf litter and soil nitrogen under canopies of two native shrubs ,Ericameria ericoides and the nitrogen-fixing Lupinus chamissonis, with those in adjacent open dunes. Results: At the population level, density and cover of the native forb Claytonia perfoliata and the exotic grass Bromus diandrus were higher under shrubs than in shrub-free areas, whereas they were lower under shrubs for the exotic grass Vulpia bromoides. In contrast, cover of three native moss species was highest under Ericameria and equally low under Lupinus and shrub-free areas. At community level, species richness and aboveground biomass of herbaceous dicots was lower beneath shrubs, whereas no pattern emerged for grasses. At ecosystem level, areas beneath shrubs accumulated more leaf litter and had larger pools of soil ammonium and nitrate. Rates of nitrate mineralization were higher under Lupinus, followed by Ericameria and then open dune. At landscape level, the two shrubs , and their distinctive vegetation and soils , frequently had uniform spatial distributions, and the distance separating neighbouring shrubs increased as their combined sizes increased. Conclusions: Collectively, these data suggest that both shrubs serve as ecosystem engineers in this coastal dune, having influences at multiple levels of biological organization. Our data also suggest that intraspecific competition influenced the spatial distributions of these shrubs and thus altered the distribution of their effects throughout the landscape. [source] |