Nitrogen Donor Atoms (nitrogen + donor_atom)

Distribution by Scientific Domains


Selected Abstracts


Solid-State and Solution Structure of Lanthanide(III) Complexes with a Flexible Py-N6 Macrocyclic Ligand

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 8 2009
Cristina Núñez
Abstract Lanthanide complexes of a hexaaza macrocyclic ligand containing a pyridine head unit (L) were synthesized (Ln = La,Lu, except Pm). The solid-state structures of the corresponding La, Ce, Pr, Nd, and Lu complexes were determined by single-crystal X-ray crystallography, and they reveal the presence of three different mononuclear complexes with three different conformations of the macrocycle and coordination environments around the metal ions. In all complexes the lanthanide ion is coordinated in an endomacrocyclic manner to the six nitrogen donor atoms of the ligand. In the La, Ce, and Pr complexes the metal ions show a 12-coordinate mononuclear environment in which 3 nitrate anions coordinate in a bidentate fashion. However, in the Nd analogue the metal ion displays a 10-coordinated environment with the coordination of 2 bidentate nitrate groups, whereas Lu shows a 9-coordinate environment interacting with 2 nitrate ligands, one of them acting as bidentate and the second one coordinating in a monodentate fashion. The 1H and 13C NMR spectra of the complexes recorded in CD3CN suggest that the complexes adopt in solution a similar structure to that observed for the Nd complex in the solid state. The [Ln(L)(NO3)3] and [Ln(L)(NO3)2]+ complexes were characterized by density functional theory (DFT) calculations (B3LYP model). The structures obtained from these calculations for La, Ce, Pr, and Nd are in good agreement with the experimental solid-state structures. The relative stabilities of the [Ln(L)(NO3)2]+ complexes with respect to the [Ln(L)(NO3)3] ones (Ln = La, Nd, Gd, Ho, or Lu) were studied both in vacuo and in acetonitrile solution (PCM model) at the same computational level. Our calculations indicate that in solution the [Ln(L)(NO3)2]+ species is the most stable one along the whole lanthanide series, in agreement with the NMR spectroscopic data.(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009) [source]


Fine-Tuning Ligands for Catalysis Using Supramolecular Strategies

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 29 2007
Vincent F. Slagt
Abstract Coordinative bonds have been used to prepare supramolecular ligands leading to well-defined catalysts formed by assembly. The construction of these ligands is based on selective metal,ligand interactions between nitrogen donor atoms of phosphorus-nitrogen building blocks and various zinc(II) porphyrins. The major advantage of this supramolecular approach of catalyst preparation is the simplification of ligand variation enabling straightforward modification of steric, electronic and chiral properties of the supramolecular ligand. A large number of new ligands becomes accessible by this modular variation of the building blocks. The ligand assembly based on pyridyl phosphites and zinc(II) porphyrin with electron-withdrawing substituents led to a twelve-fold increase in activity and an increase in enantioselectivity from 17 to 50,% in the rhodium-catalyzed hydrogenation of dimethyl itaconate. The first examples of assemblies based on non-chiral ligands and chiral zinc(II) porphyrin template molecules show, as proof of principle, an enantiomeric excess up to 18,% in the asymmetric palladium-catalyzed allylic alkylation. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2007) [source]


Metal-Controlled Stereoselectivity in Complex Formation: Assembly of Tetranuclear Copper(I) Complexes with Four Stereogenic Nitrogen Donor Functions in all-(R) and all-(S) Configurations

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 9 2003
Jörg Schneider
Abstract The reaction of N,N, -dialkyl-3,7-diazanonane-1,9-dithiolate (NR2S2) ligands (R = Me, Et) with monovalent copper resulted in the formation of the chiral complexes [Cu4(NMe2S2)2] (1) and [Cu4(NEt2S2)2] (2) which were characterised by means of X-ray diffraction and spectroscopic techniques. They contain copper atoms in both linear {S,Cu,S} fragments, which act as linkers between mononuclear [Cu(NR2S2)], subsites, and in {CuS2N2} units within these building blocks, which can be described as incomplete coordination octahedra of unusual design. Due to favourable interplay between the spatial demands of the ligand system and the electronic requirements of the copper atom, the nitrogen donor atoms within the [Cu(NR2S2)], metallo ligands are restricted to identical absolute configurations. The combination of two [Cu(NR2S2)], metallo ligands with two further CuI ions to give the tetranuclear complexes 1 or 2 via S,Cu,S bridges underlies stereochemical control, resulting in optically active systems with (R,R,R,R) and (S,S,S,S) configurations. Consequently, metallo ligands in their enantiomeric forms cannot combine via S,Cu,S bridges to form optically inactive meso complexes with the (R,R,S,S) configuration. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2003) [source]


Low- and high-spin iron (II) complexes studied by effective crystal field method combined with molecular mechanics

JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 14 2003
M. B. Darkhovskii
Abstract A computational method targeted to Werner-type complexes is developed on the basis of quantum mechanical effective Hamiltonian crystal field (EHCF) methodology (previously proposed for describing electronic structure of transition metal complexes) combined with the Gillespie,Kepert version of molecular mechanics (MM). It is a special version of the hybrid quantum/MM approach. The MM part is responsible for representing the whole molecule, including ligand atoms and metal ion coordination sphere, but leaving out the effects of the d -shell. The quantum mechanical EHCF part is limited to the metal ion d -shell. The method reproduces with reasonable accuracy geometry and spin states of the Fe(II) complexes with monodentate and polydentate aromatic ligands with nitrogen donor atoms. In this setting a single set of MM parameters set is shown to be sufficient for handling all spin states of the complexes under consideration. © 2003 Wiley Periodicals, Inc. J Comput Chem 14: 1703,1719, 2003 [source]