Nitrogen Budget (nitrogen + budget)

Distribution by Scientific Domains


Selected Abstracts


Nitrogen budget for a low-salinity, zero-water exchange culture system: II.

AQUACULTURE RESEARCH, Issue 9 2008
Evaluation of isonitrogenous feeding of various dietary protein levels to Litopenaeus vannamei (Boone)
Abstract This study evaluated the effects of isonitrogenous feeding (60 g dietary protein per kilogram of body weight per day) using experimental feeds with 25%, 30%, 35% and 40% protein on the nitrogen budget, ammonia efflux rate, growth and survival of juvenile Litopenaeus vannamei raised in a low-salinity (4 g L,1) zero-water exchange culture system for 4 weeks. No significant differences in weight gain or instantaneous growth rate were observed between the dietary treatments with 35% and 40% protein after 3 weeks of study, or between treatments with 25% and 30% protein after 4 weeks of study. High mortality rates were observed for the 35% and 40% protein treatments, probably associated with high nitrite levels (4.80 and 7.36 mg NO2 -NL,1 respectively) in water. Among the various dietary treatments, 39,46.3% of feed nitrogen was converted to shrimp biomass, 32.8,38.0% and 14.4,39.9% remained within the system as organic and inorganic nitrogen, respectively, and 32.5,39.3% was unaccounted for. The results of the present study showed high nitrogen utilization efficiencies. However, as the nitrogen loading of the zero-water exchange system increased, so did the nitrogen excretion of shrimp, causing a deteriorated general condition of the shrimp, demonstrated by the low ammonia efflux rates recorded at the end of the trial. This study confirms that low-salinity closed systems are particularly susceptible to nitrogen loading. Thus, in these culture systems, low-protein feeds may perform better as they provide more carbon for heterotrophic bacteria and less nitrogen to be degraded and transformed into nitrogenous wastes. [source]


Nitrogen budget for a low salinity, zero-water exchange culture system: I. Effect of dietary protein level on the performance of Litopenaeus vannamei (Boone)

AQUACULTURE RESEARCH, Issue 8 2007
Mayra L. González-Félix
Abstract A 4-week study was conducted to evaluate the effects of different dietary protein levels (25%, 30%, 35% and 40%) on the growth and survival of juvenile Litopenaeus vannamei raised in a low salinity (4.6 g L,1), zero-water exchange culture system, as well as on the nitrogen budget and ammonia efflux rate. No significant differences were observed among the dietary treatments for final weight, weight gain or survival of shrimp, although the best performance was observed in the 25% protein treatment group. Both weight and survival decreased as the dietary protein increased. Significant differences (P<0.05) were observed in the ammonia concentration among dietary treatments during the first 2 weeks of the experiment. The highest concentration was measured in the 40% dietary protein treatment (5.88 mg NH4-N L,1). The nitrogen budget showed that the nitrogen loss increased as the dietary protein increased under the experimental conditions; the largest amount of nitrogen recovered as shrimp biomass (42.9%) was in the 25% protein treatment group, and the largest amount of unaccounted nitrogen (39.5%) was in the 40% protein treatment. Under these conditions, utilization of low-protein diets resulted in better performance, presumably because they provided more carbon for heterotrophic bacteria and reduced the nitrogen loading of the system. [source]


Photoheterotrophy and light-dependent uptake of organic and organic nitrogenous compounds by Planktothrix rubescens under low irradiance

FRESHWATER BIOLOGY, Issue 10 2003
Tatiana Zotina
Summary 1. Planktothrix rubescens is the dominant photoautotrophic organism in Lake Zürich, a prealpine, deep, mesotrophic freshwater lake with an oxic hypolimnion. Over long periods of the year, P. rubescens accumulates at the metalimnion and growth occurs in situ at irradiance near the photosynthesis compensation point. Experiments were conducted to evaluate the contribution of photoheterotrophy, heterotrophy and light-dependent uptake of nitrogenous organic compounds to the carbon and nitrogen budget of this cyanobacterium under conditions of restricted availability of light quanta. 2. We used both purified natural populations of P. rubescens from the depth of 9 m and an axenic culture grown under low irradiance at 11 ,mol m,2 s,1 on a light : dark cycle (10 : 14 h) to determine the uptake rates of various amino acids, urea, glucose, fructose, acetate and inorganic carbon. The components were added to artificial lake water in low amounts that simulated the naturally occurring potential concentrations. 3. The uptake rates of acetate and amino acids (glycine, serine, glutamate and aspartate) were strongly enhanced at low irradiance as compared with the dark. However, no difference was observed in the uptake of arginine, which was taken up at high rates under both treatments. The uptake rates of glucose, fructose and urea were very low under all conditions. Similar results were obtained for both axenic P. rubescens and for purified natural populations of P. rubescens that were separated from bacterioplankton and other phytoplankton. 4. Metalimnetic P. rubescens that was stratified at low irradiance for weeks exhibited much higher uptake rates than filaments that were entrained in the deepening surface mixed layer and experienced higher irradiance. The added organic compounds contributed up to 62% to the total carbon uptake of metalimnetic P. rubescens. On the basis of a molar C : N ratio of 4.9, the nitrogen uptake as organic compounds satisfied up to 84% of the nitrogen demand. 5. The experiments indicate that photoheterotrophy and light-dependent uptake of nitrogenous organic compounds may contribute significantly to the carbon and nitrogen budget of filaments at low irradiance typical for growth of P. rubescens in the metalimnion and at the bottom of the surface mixed layer. [source]


Nitrogen budget for a low-salinity, zero-water exchange culture system: II.

AQUACULTURE RESEARCH, Issue 9 2008
Evaluation of isonitrogenous feeding of various dietary protein levels to Litopenaeus vannamei (Boone)
Abstract This study evaluated the effects of isonitrogenous feeding (60 g dietary protein per kilogram of body weight per day) using experimental feeds with 25%, 30%, 35% and 40% protein on the nitrogen budget, ammonia efflux rate, growth and survival of juvenile Litopenaeus vannamei raised in a low-salinity (4 g L,1) zero-water exchange culture system for 4 weeks. No significant differences in weight gain or instantaneous growth rate were observed between the dietary treatments with 35% and 40% protein after 3 weeks of study, or between treatments with 25% and 30% protein after 4 weeks of study. High mortality rates were observed for the 35% and 40% protein treatments, probably associated with high nitrite levels (4.80 and 7.36 mg NO2 -NL,1 respectively) in water. Among the various dietary treatments, 39,46.3% of feed nitrogen was converted to shrimp biomass, 32.8,38.0% and 14.4,39.9% remained within the system as organic and inorganic nitrogen, respectively, and 32.5,39.3% was unaccounted for. The results of the present study showed high nitrogen utilization efficiencies. However, as the nitrogen loading of the zero-water exchange system increased, so did the nitrogen excretion of shrimp, causing a deteriorated general condition of the shrimp, demonstrated by the low ammonia efflux rates recorded at the end of the trial. This study confirms that low-salinity closed systems are particularly susceptible to nitrogen loading. Thus, in these culture systems, low-protein feeds may perform better as they provide more carbon for heterotrophic bacteria and less nitrogen to be degraded and transformed into nitrogenous wastes. [source]


Nitrogen budget for a low salinity, zero-water exchange culture system: I. Effect of dietary protein level on the performance of Litopenaeus vannamei (Boone)

AQUACULTURE RESEARCH, Issue 8 2007
Mayra L. González-Félix
Abstract A 4-week study was conducted to evaluate the effects of different dietary protein levels (25%, 30%, 35% and 40%) on the growth and survival of juvenile Litopenaeus vannamei raised in a low salinity (4.6 g L,1), zero-water exchange culture system, as well as on the nitrogen budget and ammonia efflux rate. No significant differences were observed among the dietary treatments for final weight, weight gain or survival of shrimp, although the best performance was observed in the 25% protein treatment group. Both weight and survival decreased as the dietary protein increased. Significant differences (P<0.05) were observed in the ammonia concentration among dietary treatments during the first 2 weeks of the experiment. The highest concentration was measured in the 40% dietary protein treatment (5.88 mg NH4-N L,1). The nitrogen budget showed that the nitrogen loss increased as the dietary protein increased under the experimental conditions; the largest amount of nitrogen recovered as shrimp biomass (42.9%) was in the 25% protein treatment group, and the largest amount of unaccounted nitrogen (39.5%) was in the 40% protein treatment. Under these conditions, utilization of low-protein diets resulted in better performance, presumably because they provided more carbon for heterotrophic bacteria and reduced the nitrogen loading of the system. [source]


A molecular assessment of the iron stress response in the two phylogenetic clades of Trichodesmium

ENVIRONMENTAL MICROBIOLOGY, Issue 1 2010
P. Dreux Chappell
Summary Trichodesmium spp. play key roles in global carbon and nitrogen budgets and thus defining what controls their productivity is important for understanding climate change. While iron availability has been shown to be an important chemical factor for controlling both growth and nitrogen fixation rates in Trichodesmium, all culture experiments to date have focused solely on representatives from one clade of Trichodesmium. Genomic sequence analysis determined that the Trichodesmium erythraeum (IMS101) genome contains many of the archetypical genes involved in the prokaryotic iron stress response. Focusing on three of these genes, isiB, idiA and feoB, we found that all three showed an iron stress response in axenic T. erythraeum (IMS101), and their sequences were well conserved across four species in our Trichodesmium culture collection [consisting of two T. erythraeum strains (IMS101 and GBRTRLI101), two Trichodesmium tenue strains (Z-1 and H9-4), Trichodesmium thiebautii and Trichodesmium spiralis]. With clade-specific quantitative PCR (qPCR) primers for one of these genes, isiB, we found that high isiB expression at low Fe levels corresponded to specific reductions in N2 fixation rates in both major phylogenetic clades of Trichodesmium (the T. erythraeum clade and T. tenue clade). With regard to the two clades, the most significant difference determined was temperature optima, while more subtle differences in growth, N2 fixation rate and gene expression responses to Fe stress were also observed. However the apparent conservation of the Fe stress response in the Trichodesmium genus suggests that it is an important adaptation for their niche in the oligotrophic ocean. [source]


Comparison of greenhouse gas fluxes and nitrogen budgets from an ombotrophic bog in Scotland and a minerotrophic sedge fen in Finland

EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 5 2010
J. Drewer
Northern peatlands cover approximately 4% of the global land surface area. Those peatlands will be particularly vulnerable to environmental and climate change and therefore it is important to investigate their total greenhouse gas (GHG) budgets, to determine the feedback on the climate. Nitrogen (N) is known to influence the GHG budget in particular by affecting the methane (CH4) balance. At two peatland sites in Scotland and Finland GHG fluxes of carbon dioxide (CO2), methane and nitrous oxide (N2O) and nitrogen fluxes were measured as part of the European project ,NitroEurope'. The Scottish site, Auchencorth Moss, was a GHG sink of ,321, ,490 and ,321 g CO2 eq m,2 year,1 in 2006, 2007 and 2008, respectively, with CO2 as the dominating GHG. In contrast, the dominating GHG at the Finnish site, Lompolojänkkä, was CH4, resulting in the site being a net GHG source of +485 and +431 g CO2 eq m,2 year,1 in 2006 and 2007, respectively. Therefore, Auchencorth Moss had a negative global warming potential (GWP) whilst Lompolojänkkä had a positive GWP over the investigated time period. Initial results yielded a positive N budget for Lompolojänkkä of 7.1 kg N ha,1 year,1, meaning the site was gaining nitrogen, and a negative N budget for Auchencorth Moss of ,2.4 kg N ha year,1, meaning the site was losing nitrogen. [source]