Nitrite Concentration (nitrite + concentration)

Distribution by Scientific Domains


Selected Abstracts


Effect of dietary protein level on growth, survival and ammonia efflux rate of Litopenaeus vannamei (Boone) raised in a zero water exchange culture system

AQUACULTURE RESEARCH, Issue 9 2005
Silvia Gómez-Jiménez
Abstract Litopenaeus vannamei postlarvae (1.96±0.07 g) were reared in a zero water exchange system for 25 days at 28°C. They were fed four commercial diets containing 25%, 30%, 35% or 40% crude protein in three replicate aquaria per dietary treatment. Total ammonia, nitrite, nitrate and pH were monitored weekly and total ammonia levels were additionally measured every 3 days using the flow injection analysis method. Total ammonia efflux rates were measured at days 0, 14 and 21, and survival and growth rates were recorded at the end of the experiment. No significant differences between water quality parameters such as temperature, salinity, dissolved oxygen and pH were found. Nitrite concentration remained low in all dietary treatments up to the second week increasing considerably from day 14 onwards suggesting the initiation of the nitrification process. Water total ammonia of all experimental groups exhibited a gradual increase up to day 13; however, following this time ammonia levels of all experimental groups decreased, probably due to either the action of bacterial nitrification or ammonia-N uptake by the animals. High ammonia efflux rates were recorded at day 14, especially after the first hour of immersion in the 25% protein group, but no significant changes occurred in any experimental group after 3 h. No significant differences in weight gain, final weight or survival of shrimp were observed under these experimental conditions. The importance of zero water exchange systems and their effects on the nitrogen metabolism of crustaceans are discussed. [source]


Pharmacodynamic interactions between recombinant mouse interleukin-10 and prednisolone using a mouse endotoxemia model

JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 3 2005
Abhijit Chakraborty
Abstract The pharmacodynamic interactions between recombinant mouse interleukin-10 (IL-10) and prednisolone were examined in lipopolysaccharide (LPS)-induced experimental endotoxemia in Balb/c mice. Treatment phases consists of single doses of IL-10 (10 ,g/kg i.p.), prednisolone (25 (mg/kg i.p.), IL-10 (2.5 ,g/kg i.p.) with prednisolone (6.25 mg/kg i.p.), or placebo (saline). Measurements included plasma steroid kinetics and IL-10 concentrations and responses to LPS including proinflammatory cytokines (TNF-,, IFN-,) and circulatory NO measured as plasma nitrate/nitrite concentrations. The intraperitoneal dosing of LPS produced large and transient elevations of plasma TNF-,, IFN-,, and NO concentrations. Noncompartmental and model fitting using extended indirect response models based on drug inhibition of multiphase stimulation of biomarkers by LPS were used to describe the in vivo pharmacodynamics and drug interactions. Dosing with prednisolone, IL-10, or their combinations produced strong inhibition of cytokine and NO production. The IC50 values of prednisolone ranged from 54 to 171 ng/mL, and IC50 values for IL-10 ranged from 0.06 to 0.69 ng/mL. The production of NO was described as a cascading consequence of the TNF-, and IFN-, plasma concentrations. The joint dosing of IL-10 with prednisolone produces moderately synergistic immunosuppressive effects in this system. Both drugs were sufficiently protective in suppressing the inflammatory mediators when administered prior to the LPS trigger, while such effects were modest when administered after the inflammatory stimulus was provoked. The integrated and complex pharmacokinetic/pharmacodynamic models well capture the in vivo processes, drug potencies, and interactions of IL-10 and prednisolone. © 2005 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 94:590,603, 2005 [source]


Competition between two nitrite-oxidizing bacterial populations: a model for studying the impact of wastewater treatment plant discharge on nitrification in sediment

FEMS MICROBIOLOGY ECOLOGY, Issue 1 2002
Christine Féray
Abstract Nitrobacter, a ubiquitous nitrite oxidizer in natural and anthropized environments, is commonly studied as the model genus performing the second stage of nitrification. In rivers, wastewater treatment plant discharges may affect the nitrite-oxidizing activity and the responsible genera that are largely associated with sediment. We used a laboratory batch culture approach with Nitrobacter wynogradskyi ssp. agilis strain AG and Nitrobacter hamburgensis strain X14 to characterize the possible stress effect of wastewater effluent on these populations and to study the possible competition between an effluent strain (X14) and a sediment strain (AG) over a 42-day incubation time. Immunofluorescence enumerations of each strain showed that they both survived and settled in the sediment, indicating that there was no significant stress effect due to chemical changes caused by the effluent. The development of the strains' density and activity was directly correlated with the available nitrite concentration. Nevertheless, the potential specific activity was not constant along the so-called mixotrophic (non-limiting nitrite concentration) and heterotrophic (nitrite depletion) conditions. This illustrates the inducibility of the nitrite oxidoreductase and indicates the metabolic versatility of the strains. In our experimental conditions, the preferentially autotrophic AG strain appeared more competitive than the preferentially mixo- or heterotrophic X14 strain, including in heterotrophic environment. [source]


Diabetes, oxidative stress, and antioxidants: A review

JOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY, Issue 1 2003
A. C. Maritim
Abstract Increasing evidence in both experimental and clinical studies suggests that oxidative stress plays a major role in the pathogenesis of both types of diabetes mellitus. Free radicals are formed disproportionately in diabetes by glucose oxidation, nonenzymatic glycation of proteins, and the subsequent oxidative degradation of glycated proteins. Abnormally high levels of free radicals and the simultaneous decline of antioxidant defense mechanisms can lead to damage of cellular organelles and enzymes, increased lipid peroxidation, and development of insulin resistance. These consequences of oxidative stress can promote the development of complications of diabetes mellitus. Changes in oxidative stress biomarkers, including superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase, glutathione levels, vitamins, lipid peroxidation, nitrite concentration, nonenzymatic glycosylated proteins, and hyperglycemia in diabetes, and their consequences, are discussed in this review. In vivo studies of the effects of various conventional and alternative drugs on these biomarkers are surveyed. There is a need to continue to explore the relationship between free radicals, diabetes, and its complications, and to elucidate the mechanisms by which increased oxidative stress accelerates the development of diabetic complications, in an effort to expand treatment options. © 2003 Wiley Periodicals, Inc. J Biochem Mol Toxicol 17:24,38, 2003; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/jbt.10058 [source]


Effects on acid-base balance, methaemoglobinemia and nitrogen excretion of European eel after exposure to elevated ambient nitrite

JOURNAL OF FISH BIOLOGY, Issue 3 2002
C.-Y. Huang
Haemoglobin, methaemoglobin, blood nitrite concentration and acid-base balance were measured in European eel Anguilla anguilla following exposure to 0 (control), 0·142, 0·356, 0·751 and l·549 mM nitrite in fresh water for 24 h. Blood GOT (glutamate oxaloacetate transaminase) and GPT (glutamate pyruvate transaminase) activities and whole animal ammonia-N and urea-N excretions were also measured. Blood nitrite, methaemoglobin, PO2 (oxygen partial pressure), GOT, and whole animal ammonia-N excretion and urea-N excretion increased directly with increasing ambient nitrite concentrations, whereas blood pH, PCO2, and HCO,3 were inversely related to ambient nitrite concentration. An accumulation of nitrite in the blood of A. anguilla following 24 h exposure to elevated ambient nitrite as low as 0·751 mM increased its blood methaemoglobin, PO2, GOT and nitrogen excretion, but decreased its PCO2 (carbon dioxide partial pressure), HCO,3 and functional haemoglobin. [source]


Hyaluronan suppressed nitric oxide production in the meniscus and synovium of rabbit osteoarthritis model

JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 3 2001
Kenji Takahashi
Nitric oxide (NO) plays an important role in cartilage degeneration, and NO donors induce meniscus degeneration and synovium inflammation. This study evaluated the effect of intraarticular injections of hyaluronan (HA) on NO production in meniscus and synovium using an experimental osteoarthritis (OA) model. Thirty-six New Zealand white rabbits underwent unilateral anterior cruciate ligament transection (ACLT), and were divided into three groups. Four weeks after ACLT, the HA group started to receive intraarticular HA injections once a week for 5 weeks; the vehicle group started to receive the carrier of HA; and the no injection group, no treatment. All ACLT knees were harvested at the 9th week. Meniscus and synovium sections were examined by immunohistochemistry for nitrotyrosine. The pieces of these two tissues were cultured for 24 h. Culture supernatants were analyzed for nitrite concentration. The amount of NO produced by the meniscus was much larger than that produced by the synovium. NO productions in the meniscus and synovium of the HA group were significantly lower than those of the other groups. The results suggest that the inhibition of NO production in meniscus and synovium might be a part of the mechanism of the therapeutic effect of HA on OA. © 2001 Orthopaedic Research Society. Published by Elsevier Science Ltd. All rights reserved. [source]


Acute Toxicity and Sublethal Effects of Nitrite on Selected Hematological Parameters and Tissues in Dark-banded Rockfish, Sebastes inermis

JOURNAL OF THE WORLD AQUACULTURE SOCIETY, Issue 2 2007
In-Seok Park
Acute toxicity and sublethal effects of nitrite in dark-banded rockfish, Sebastes inermis (83.3 ± 7.2 g), were studied under static conditions for a period of 96 h. The acute toxicity of nitrite evaluated for the 96-h lethal concentration (LC50) was 700 mg/L. The sublethal effects on selected hematological parameters of S. inermis, such as total erythrocyte count (TEC), hemoglobin, plasma glucose, and serum protein content, were measured after 0, 6, 12, 24, 48, 72, and 96 h of exposure to 0, 50, 100, 200, 400, and 700 mg/L of nitrite. Sublethal nitrite caused progressive reduction in the TEC, hemoglobin, and serum protein content in fish depending on the nitrite concentration and exposure period. The 96-h exposure resulted in a 14,42% reduction in TEC and 25,33% reduction in hemoglobin content for 100,700 mg/L of nitrite compared to the control. A dose-related reduction in plasma glucose (25.7,34.2%) was observed for concentrations of 200,700 mg/L of nitrite during 48 h of exposure, followed by an increase through 96 h. A significant reduction in serum protein (7.3,12.6%) was observed for 200,700 mg/L of nitrite after 96 h of exposure. Abnormal histological changes in skin, gill, liver, and kidney tissue were observed in fish exposed to 700 mg/L of nitrite after 96 h of exposure compared to the control. Although no mortality of S. inermis occurred at 500 mg/L of nitrite, all hematological parameters adversely responded to a nitrite dose of 200 mg/L for 96 h. These results showed that although acute toxicity concentration of nitrite in S. inermis is higher than 700 mg/L, sublethal concentrations of nitrite also negatively affect hematological parameters. [source]


Acute and Chronic Effects of Nitrite on White Shrimp, Litopenaeus vannamei, Cultured in Low-Salinity Brackish Water

JOURNAL OF THE WORLD AQUACULTURE SOCIETY, Issue 3 2004
Amit Gross
The marine white shrimp Litopenaeus vannamei is widely cultured. Recently, farmers have begun to culture this shrimp in low-salinity brackish water (< 6 g/L). The intensification of shrimp culture often results in occurrences of elevated nitrite concentration during the growing season. Nitrite is toxic to shrimp and exposure to high concentrations may cause retarded growth and mortalities. The current study was aimed at investigating the acute and chronic toxicity of nitrite to L. vannamei grown in low-salinity (2 g/L) brackish water. Studies of the 96-h EC50 and LC50 values of nitrite were performed to determine the acute toxicity, and an aquarium growth study (2 d post exposure to elevated nitrite concentrations) was conducted to evaluate the chronic effects of nitrite on shrimp production. The 96-h EC50 and LC50 values for juvenile L. vannamei grown in water of 2 g/L salinity was about 9 mg/L NO2 -N, suggesting a safe concentration for shrimp production in ponds to be less than 0.45 mgIL NO2 -N. Exposing shrimp to nitrite concentration of 4 mg/L for 2 d reduced their growth but did not affect their survival. [source]


Preservation of Endothelium Nitric Oxide Release by Pulsatile Flow Cardiopulmonary Bypass When Compared With Continuous Flow

ARTIFICIAL ORGANS, Issue 11 2009
Ettore Lanzarone
Abstract The aim of this work is to analyze endothelium nitric oxide (NO) release in patients undergoing continuous or pulsatile flow cardiopulmonary bypass (CPB). Nine patients operated under continuous flow CPB, and nine patients on pulsatile flow CPB were enrolled. Plasma samples were withdrawn for the chemiluminescence detection of nitrite and nitrate. Moreover the cellular component was withdrawn for the detection of nitric oxide synthase (NOS) activity in the erythrocytes, and an estimation of systemic inflammatory response was carried out. Significant reduction in the intraoperative concentration with respect to the preoperative was observed only under continuous flow CPB for both nitrite and NOx (nitrite + nitrate) concentration (P = 0.010 and P = 0.016, respectively). Significant difference in intraoperative nitrite concentration was also observed between the groups (P = 0.012). Finally, erythrocytes showed a certain endothelial NOS activity, which did not differ between the groups, and no differences in the inflammatory response were pointed out. The significant reduction of NO2 - concentration under continuous perfusion revealed the strong connection among perfusion modality, endothelial NO release, and plasmatic nitrite concentration. The similar erythrocyte eNOS activity between the groups revealed that the differences in blood NO metabolites are mainly ascribable to the endothelium release. [source]


Effects on acid-base balance, methaemoglobinemia and nitrogen excretion of European eel after exposure to elevated ambient nitrite

JOURNAL OF FISH BIOLOGY, Issue 3 2002
C.-Y. Huang
Haemoglobin, methaemoglobin, blood nitrite concentration and acid-base balance were measured in European eel Anguilla anguilla following exposure to 0 (control), 0·142, 0·356, 0·751 and l·549 mM nitrite in fresh water for 24 h. Blood GOT (glutamate oxaloacetate transaminase) and GPT (glutamate pyruvate transaminase) activities and whole animal ammonia-N and urea-N excretions were also measured. Blood nitrite, methaemoglobin, PO2 (oxygen partial pressure), GOT, and whole animal ammonia-N excretion and urea-N excretion increased directly with increasing ambient nitrite concentrations, whereas blood pH, PCO2, and HCO,3 were inversely related to ambient nitrite concentration. An accumulation of nitrite in the blood of A. anguilla following 24 h exposure to elevated ambient nitrite as low as 0·751 mM increased its blood methaemoglobin, PO2, GOT and nitrogen excretion, but decreased its PCO2 (carbon dioxide partial pressure), HCO,3 and functional haemoglobin. [source]


Response Surface Model for the Estimation of Escherichia coli O 157:H7 Growth under Different Experimental Conditions

JOURNAL OF FOOD SCIENCE, Issue 1 2005
Rose Maria García-Gimeno
ABSTRACT: In this study, a Response Surface Model (RSM) of Escherichia coli O157:H7 as affected by pH levels, sodium chloride and nitrite concentrations, temperature, and aerobic/anaerobic conditions is presented. The standard error of prediction (%SEP) obtained was acceptable for the growth rate prediction (33%SEP), although a bit high for lag time (53.01 %SEP). Mathematical validation demonstrated that the RSM predicts growth rate values on the fail-safe side in aerobic conditions and within the acceptable range (bias factor [Bf] = 0.99) with acceptable accuracy (accuracy factor [Af] = 1.15), as well as for lag time (Bf = 1.05; Af = 1.25). Temperature was found to have the greatest effect on the kinetic parameters, followed by NaCl concentration and pH. In the experimental range considered here (0 to 200 ppm), NaNO2 concentration was found to have a significant effect on growth rate but not on lag time. [source]


Acute and Chronic Effects of Nitrite on White Shrimp, Litopenaeus vannamei, Cultured in Low-Salinity Brackish Water

JOURNAL OF THE WORLD AQUACULTURE SOCIETY, Issue 3 2004
Amit Gross
The marine white shrimp Litopenaeus vannamei is widely cultured. Recently, farmers have begun to culture this shrimp in low-salinity brackish water (< 6 g/L). The intensification of shrimp culture often results in occurrences of elevated nitrite concentration during the growing season. Nitrite is toxic to shrimp and exposure to high concentrations may cause retarded growth and mortalities. The current study was aimed at investigating the acute and chronic toxicity of nitrite to L. vannamei grown in low-salinity (2 g/L) brackish water. Studies of the 96-h EC50 and LC50 values of nitrite were performed to determine the acute toxicity, and an aquarium growth study (2 d post exposure to elevated nitrite concentrations) was conducted to evaluate the chronic effects of nitrite on shrimp production. The 96-h EC50 and LC50 values for juvenile L. vannamei grown in water of 2 g/L salinity was about 9 mg/L NO2 -N, suggesting a safe concentration for shrimp production in ponds to be less than 0.45 mgIL NO2 -N. Exposing shrimp to nitrite concentration of 4 mg/L for 2 d reduced their growth but did not affect their survival. [source]


Effect of Dietary Protein Concentration and Stocking Density on Production Characteristics of Pond-Raised Channel Catfish Ictalurus punctatus

JOURNAL OF THE WORLD AQUACULTURE SOCIETY, Issue 2 2003
Menghe H. Li
Diets containing 28% and 32% crude protein were compared for pond-raised channel catfish Ictalurus punctatus stocked at densities of 14,820, 29,640, or 44,460 fish/ha. Fingerling channel catfish with average initial weight of 48.5 g/fish were stocked into 30 0.04-ha ponds. Five ponds were randomly allotted for each dietary protein ± stocking density combination. Fish were fed once daily to satiation for two growing seasons. There were no interactions between dietary protein concentration and stocking density for any variables. Dietary protein concentrations (28% or 32%) did not affect net production, feed consumption and weight gain per fish, feed conversion ratio, survival, processing yields, fillet moisture, protein and ash concentrations, or pond water ammonia and nitrite concentrations. Fish fed the 32% protein diet had slightly but significantly lower levels of visceral and fillet fat than fish fed the 28% protein diet. As stocking density increased, net production increased, while weight gain of individual fish, feed efficiency, and survival decreased. Stocking densities did not affect processing yield and fillet composition of the fish. Although highly variable among different ponds and weekly measurements, ponds stocked at the highest density exhibited higher average levels of total ammonia-nitrogen (TAN) and nitrite-nitrogen (NO2 -N) than ponds stocked at lower densities. However, stocking density had no significant effect on un-ionized ammonia-nitrogen (NH3 -N) concentrations, calculated based on water temperature, pH, and TAN. By comparing to the reported critical concentration, a threshold below which is considered not harmful to the fish, these potentially toxic nitrogenous compounds in the pond water were generally in the range acceptable for channel catfish. It appears that a 28% protein diet can provide equivalent net production, feed efficiency, and processing yields as a 32% protein diet for channel catfish raised in ponds from advanced fingerlings to marketable size at densities varying from 14,820 to 44,460 fish/ha under single-batch cropping systems. Optimum dietary protein concentration for pond-raised channel catfish does not appear to be affected by stocking density. [source]


Chondroitin Sulfate Inhibits the Nuclear Translocation of Nuclear Factor-,B in Interleukin-1,-Stimulated Chondrocytes

BASIC AND CLINICAL PHARMACOLOGY & TOXICOLOGY, Issue 1 2008
Claudia Jomphe
In addition, chondroitin sulfate prevents joint space narrowing of the knee. We hypothesized that the anti-inflammatory effect of chondroitin sulfate is associated to a decrease in the activation of mitogen-activated protein kinases (MAPK) and of the transcription factors nuclear factor-,B (NF-,B) and activator protein-1 (AP-1). Cultured rabbit chondrocytes were stimulated with interleukin-1, (IL-1,) in presence of chondroitin sulfate. Nuclear translocation of NF-,B and AP-1, and nitrite concentrations (as an index for nitric oxide) was assessed 48 hr later. The effect of chondroitin sulfate on IL-1, activation of extracellular signal-regulated kinase 1/2 (Erk1/2) and p38MAPK was documented by immunoblot. The effect of chondroitin sulfate on sodium nitroprusside-induced apoptosis was evaluated with the terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labelling assay. Chondroitin sulfate reduced IL-1,-induced NF-,B nuclear translocation, but not AP-1 translocation, it decreased IL-1,-induced phosphorylation of Erk1/2 and abrogated p38MAPK phosphorylation, but did not prevent IL-1,-induced increase in nitrite. Finally, chondroitin sulfate decreased nitroprusside-induced apoptosis of the chondrocytes. These results suggest that some of the biological activities of chondroitin sulfate may be associated to the reduction in Erk1/2 and p38MAPK phosphorylation and nuclear transactivation of NF-,B. [source]


Containment of Biogenic Sulfide Production in Continuous Up-Flow Packed-Bed Bioreactors with Nitrate or Nitrite

BIOTECHNOLOGY PROGRESS, Issue 2 2003
Casey Hubert
Produced water from the Coleville oil field in Saskatchewan, Canada was used to inoculate continuous up-flow packed-bed bioreactors. When 7.8 mM sulfate and 25 mM lactate were present in the in-flowing medium, H2S production (souring) by sulfate-reducing bacteria (SRB) was prevented by addition of 17.5 mM nitrate or 20 mM nitrite. Changing the sulfate or lactate concentration of the in-flowing medium indicated that the concentrations of nitrate or nitrite required for containment of souring decreased proportionally with a lowered concentration of the electron donor lactate, while the sulfate concentration of the medium had no effect. Microbial communities were dominated by SRB. Nitrate addition did not give rise to changes in community composition, indicating that lactate oxidation and H2S removal were caused by the combined action of SRB and nitrate-reducing, sulfide-oxidizing bacteria (NR-SOB). Apparently the nitrite concentrations formed by these NR-SOB did not inhibit the SRB sufficiently to cause community shifts. In contrast, significant community shifts were observed upon direct addition of high concentrations (20 mM) of nitrite. Strains NO3A and NO2B, two newly isolated, nitrate-reducing bacteria (NRB) emerged as major community members. These were found to belong to the ,-division of the Proteobacteria, to be most closely related to Campylobacter lari, and to oxidize lactate with nitrate or nitrite as the electron acceptor. Thus the mechanism of microbial H2S removal in up-flow packed-bed bioreactors depended on whether nitrate (SRB/NR-SOB) or nitrite (SRB/NR-SOB as well as NRB) was used. However, the amount of nitrate or nitrite needed to completely remove H2S was dictated by the electron donor (lactate) concentration, irrespective of mechanism. [source]


Electrocatalytic Oxidation of Nitrite at Gold Nanoparticle- polypyrrole Nanowire Modified Glassy Carbon Electrode

CHINESE JOURNAL OF CHEMISTRY, Issue 12 2009
Jing Li
Abstract A novel chemically modified electrode based on the dispersion of gold nanoparticles on polypyrrole nanowires has been developed to investigate the oxidation behavior of nitrite using cyclic voltammetry, differential pulse voltammetry and chronoamperometry techniques. The diffusion coefficient (D), electron transfer coefficient (,) and charge transfer rate constant (k) for the oxidation of nitrite were determined. The modified electrode exhibited high electrocatalytic activity toward the oxidation of nitrite. The catalytic peak current was found to be linear with nitrite concentrations in the range of 8.0×10,7,2.5×10,3 mol·L,1 with a detection limit of 1.0×10,7 mol·L,1 (s/n=3). The proposed method was successfully applied to the detection of nitrite in water samples with obtained satisfactory results. Additionally, the sensor also showed excellent sensitivity, anti-interference ability, reproducibility and stability properties. [source]