Nigrostriatal Neurons (nigrostriatal + neuron)

Distribution by Scientific Domains


Selected Abstracts


Intrastriatal administration of human immunodeficiency virus-1 glycoprotein 120 reduces glial cell-line derived neurotrophic factor levels and causes apoptosis in the substantia nigra

DEVELOPMENTAL NEUROBIOLOGY, Issue 12 2006
Rachel L. Nosheny
Abstract Uninfected neurons of the substantia nigra (SN) degenerate in human immunodeficiency virus (HIV)-positive patients through an unknown etiology. The HIV envelope glycoprotein 120 (gp120) causes apoptotic neuronal cell death in the rodent striatum, but its primary neurotoxic mechanism is still under investigation. Previous studies have shown that gp120 causes neurotoxicity in the rat striatum by reducing brain-derived neurotrophic factor (BDNF). Because glial cell line-derived neurotrophic factor (GDNF) and BDNF are neurotrophic factors crucial for the survival of dopaminergic neurons of the SN, we investigated whether gp120 reduces GDNF and BDNF levels concomitantly to induce apoptosis. Rats received a microinjection of gp120 or vehicle into the striatum and were sacrificed at various time intervals. GDNF but not BDNF immunoreactivity was decreased in the SN by 4 days in gp120-treated rats. In these animals, a significant increase in the number of caspase-3- positive neurons, both tyrosine hydroxylase (TH)-positive and -negative, was observed. Analysis of TH immunoreactivity revealed fewer TH-positive neurons and fibers in a medial and lateral portion of cell group A9 of the SN, an area that projects to the striatum, suggesting that gp120 induces retrograde degeneration of nigrostriatal neurons. We propose that dysfunction of the nigrostriatal dopaminergic system associated with HIV may be caused by a reduction of neurotrophic factor expression by gp120. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006 [source]


Effects of long-term treatment with dopamine receptor agonists and antagonists on terminal arbor size

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 5 2002
C. L. Parish
Abstract This study demonstrates that pharmacological manipulation of the dopamine (DA) receptors can modulate the size of the axonal tree of substantia nigra pars compacta (SNpc) neurons in mice. Pharmacological blockade or genetic ablation of the D2 receptor (D2R) resulted in sprouting of DA SNpc neurons whereas treatment with a D2 agonist resulted in pruning of the terminal arbor of these neurons. Agents such as cocaine, that indirectly stimulate D2R, also resulted in reduced terminal arbor. Specific D1 agonists or antagonists had no effect on the density of DA terminals in the striatum. We conclude that the D2 receptor has a central role in regulating the size of the terminal arbor of nigrostriatal neurons. These findings have implications relating to the use of dopaminergic agonists in the management of Parkinson's disease and in controlling plasticity following injury, loss or transplantation of DA neurons. [source]


Influences of dopaminergic lesion on epidermal growth factor-ErbB signals in Parkinson's disease and its model: neurotrophic implication in nigrostriatal neurons

JOURNAL OF NEUROCHEMISTRY, Issue 4 2005
Yuriko Iwakura
Abstract Epidermal growth factor (EGF) is a member of a structurally related family containing heparin-binding EGF-like growth factor (HB-EGF) and transforming growth factor alpha (TGF,) that exerts neurotrophic activity on midbrain dopaminergic neurons. To examine neurotrophic abnormality in Parkinson's disease (PD), we measured the protein content of EGF, TGF,, and HB-EGF in post-mortem brains of patients with Parkinson's disease and age-matched control subjects. Protein levels of EGF and tyrosine hydroxylase were decreased in the prefrontal cortex and the striatum of patients. In contrast, HB-EGF and TGF, levels were not significantly altered in either region. The expression of EGF receptors (ErbB1 and ErbB2, but not ErbB3 or ErbB4) was down-regulated significantly in the same forebrain regions. The same phenomenon was mimicked in rats by dopaminergic lesions induced by nigral 6-hydroxydopamine infusion. EGF and ErbB1 levels in the striatum of the PD model were markedly reduced on the lesioned side, compared with the control hemisphere. Subchronic supplement of EGF in the striatum of the PD model locally prevented the dopaminergic neurodegeration as measured by tyrosine hydroxylase immunoreactivity. These findings suggest that the neurotrophic activity of EGF is maintained by afferent signals of midbrain dopaminergic neurons and is impaired in patients with Parkinson's disease. [source]


Aging of the nigrostriatal system in the squirrel monkey

THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 4 2004
Alison L. McCormack
Abstract Increasing incidence of Parkinson's disease with advancing age suggests that age-related processes predispose the nigrostriatal dopaminergic system to neurodegeneration. Several hypotheses concerning the effects of aging on nigrostriatal neurons were assessed in this study using a non-human primate model. First, we examined the possibility that the total number of dopaminergic neurons decline in the substantia nigra as a function of age. Stereological counting based on both tyrosine hydroxylase immunoreactivity (TH-ir) and neuromelanin (NM) content revealed no difference in cell number between young, middle-aged and old squirrel monkeys. We then determined whether advancing age changed the relative proportion of neurons characterized by 1) TH-ir in the absence of NM, 2) the presence of both TH-ir and NM, or 3) NM without TH-ir. Indeed, a progressive age-related depletion of TH only cells was paralleled by an increase in NM only neurons. The possibility that these changes could underlie a functional impairment of the nigrostriatal system was supported by striatal dopamine measurements showing a decrease in older monkeys. Finally, we tested the hypotheses that aging may enhance cell vulnerability to injury and that different dopaminergic subpopulations display varying degrees of susceptibility. When monkeys were exposed to the neurotoxicant 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, cell loss was markedly more pronounced in older animals, and the ranking of vulnerability was TH only < TH/NM < NM only cells. The data indicate that, even in the absence of an overall neuronal loss, changes in the characteristics of dopaminergic cells reflect functional deficits and increased vulnerability to injury with age. NM content appears to be an important marker of these age-related effects. J. Comp. Neurol. 471:387,395, 2004. © 2004 Wiley-Liss, Inc. [source]