Home About us Contact | |||
Niche Dimensions (niche + dimension)
Selected AbstractsInvasion of Agave species (Agavaceae) in south-east Spain: invader demographic parameters and impacts on native speciesDIVERSITY AND DISTRIBUTIONS, Issue 5-6 2004Ernesto I. Badano ABSTRACT Several mechanisms have been proposed to explain the success of invasive species in new environments. A species may become invasive when a new site provides the potential for positive rates of population growth. This may be the case of several Agave species introduced to Spain in the 1940s. In this paper we document factors that promote large increases of populations of these species, and their effects on native plant communities in two sites of SE Spain. Results showed higher rhizome and bulbil production, and higher establishment rates by agaves in sandy soils than in clay soils. In their native habitats, agaves have low establishment rates and sandy soils are rare. This suggests that sandy soils are an opportunity which releases the clonal reproduction of Agave. The effects of agaves on the physiological performance and reproduction of native species were negative, positive or neutral, depending on the size and rooting depth of neighbours. Assemblages of native species growing within Agave stands had lower diversity than non-invaded sites. Our data show that Agave stands have positive growth rates in SE Spain, and suggest that sandy soils are a niche dimension enhancing the invasion in these new habitats. [source] Energy density patterns of nectar resources permit coexistence within a guild of Neotropical flower-visiting batsJOURNAL OF ZOOLOGY, Issue 1 2004Marco Tschapka Abstract Neotropical rainforests support guilds of nectar feeding bats (Phyllostomidae: Glossophaginae) with up to six coexisting species. To analyse guild structure and mechanisms of coexistence in a Costa Rican tropical lowland rainforest, the resource use and morphology of bats were compared to the energetic characteristics of preferred nectar resources and their spatio-temporal distribution. The relative abundance of nectar-feeding bats was determined from mistnet captures over 26 months. Food items were identified by analysis of pollen loads and faecal samples. Phenology, flower density and nectar sugar content of resource plants permitted quantitative estimations of resource availability expressed as energy density (kJ ha,1 day,1) throughout the annual cycle. Four glossophagine bat species co-occurred at La Selva: two permanent residents (Glossophaga commissarisi, Hylonycteris underwoodi) and two seasonal species (Lichonycteris obscura, Lonchophylla robusta) that were found in small numbers during a period of high nectar availability. The two resident species differed in their abundance and in their temporal feeding strategies. After the main flowering peak, the common G. commissarisi shifted to a more frugivorous diet, while the rarer H. underwoodi fed on the few remaining bat-flowers. Resource plant species differed in their energy density by up to two orders of magnitude. Hylonycteris underwoodi visited more often plant species with a low energy yield than G. commissarisi. Because of its smaller body size and a wing morphology that promotes fast flight, H. underwoodi appears to be better adapted to low and scattered nectar resource levels. The two seasonal species differed greatly in body mass, which suggests different strategies for high-quality resource tracking. Large body mass in Lonchophylla robusta provides an energy buffer that permits daily commuting flights between a permanent roost and profitable foraging areas, while the small Lichonycteris obscura seems to track resources nomadically. It is proposed that energy density may be a major niche dimension that restricts access of species to certain habitats and that may profoundly influence the structure of nectar-feeding bat guilds. [source] Past and present potential distribution of the Iberian Abies species: a phytogeographic approach using fossil pollen data and species distribution modelsDIVERSITY AND DISTRIBUTIONS, Issue 2 2010Francisca Alba-Sánchez Abstract Aim, Quaternary palaeopalynological records collected throughout the Iberian Peninsula and species distribution models (SDMs) were integrated to gain a better understanding of the historical biogeography of the Iberian Abies species (i.e. Abies pinsapo and Abies alba). We hypothesize that SDMs and Abies palaeorecords are closely correlated, assuming a certain stasis in climatic and topographic ecological niche dimensions. In addition, the modelling results were used to assign the fossil records to A. alba or A. pinsapo, to identify environmental variables affecting their distribution, and to evaluate the ecological segregation between the two taxa. Location, The Iberian Peninsula. Methods, For the estimation of past Abies distributions, a hindcasting process was used. Abies pinsapo and A. alba were modelled individually, first calibrating the model for their current distributions in relation to the present climate, and then projecting it into the past,the last glacial maximum (LGM) and the Middle Holocene periods,in relation to palaeoclimate simulations. The resulting models were compared with Iberian-wide fossil pollen records to detect areas of overlap. Results, The overlap observed between past Abies refugia,inferred from fossil pollen records,and the SDMs helped to construct the Quaternary distribution of the Iberian Abies species. SDMs yielded two well-differentiated potential distributions: A. pinsapo throughout the Baetic mountain Range and A. alba along the Pyrenees and Cantabrian Range. These results propose that the two taxa remained isolated throughout the Quaternary, indicating a significant geographical and ecological segregation. In addition, no significant differences were detected comparing the three projections (present-day, Mid-Holocene and LGM), suggesting a relative climate stasis in the refuge areas during the Quaternary. Main conclusions, Our results confirm that SDM projections can provide a useful complement to palaeoecological studies, offering a less subjective and spatially explicit hypothesis concerning past geographic patterns of Iberian Abies species. The integration of ecological-niche characteristics from known occurrences of Abies species in conjunction with palaeoecological studies could constitute a suitable tool to define appropriate areas in which to focus proactive conservation strategies. [source] Edaphic niche differentiation among Polybotrya ferns in western Amazonia: implications for coexistence and speciationECOGRAPHY, Issue 3 2006Hanna TuomistoArticle first published online: 22 FEB 200 To study the degree of edaphic specialization in Amazonian plants, the distribution patterns of seven species of Polybotrya ferns were studied in 109 sites in a climatically uniform area of northwestern Amazonia (Colombia, Ecuador and northern Peru). The two most abundant species of Polybotrya were found in about two-thirds of the sites with almost 7000 individuals each, the rarest species occurred in just one site with 40 individuals. Each of the seven species appeared to have a unique realised niche, when niche dimensions were defined by gradients in soil texture, soil cation content, and inundation. The species also differed in how broadly or narrowly they were distributed along each gradient. Some species were practically never found in the same sites, whereas others co-occurred with a high frequency, in spite of showing clearly different abundance patterns among sites. A single site only contains a small part of the edaphic variation present in the landscape, and a small proportion of any species' niche space, so broad-scale studies are needed to adequately describe and compare species' niches and to assess to what degree niche differences promote species coexistence. The distribution patterns in Polybotrya are consistent with, but do not prove, that ecological speciation may have been important in the radiation of the genus. If such a pattern is found to be common in other Amazonian plants, this would indicate that each evolutionary lineage has adapted to the available habitats largely independently of the others. [source] The tri-trophic niche concept and adaptive radiation of phytophagous insectsECOLOGY LETTERS, Issue 12 2005Michael S. Singer Abstract A conceptual divide exists between ecological and evolutionary approaches to understanding adaptive radiation, although the phenomenon is inherently both ecological and evolutionary. This divide is evident in studies of phytophagous insects, a highly diverse group that has been frequently investigated with the implicit or explicit goal of understanding its diversity. Whereas ecological studies of phytophagous insects increasingly recognize the importance of tri-trophic interactions as determinants of niche dimensions such as host-plant associations, evolutionary studies typically neglect the third trophic level. Here we attempt to reconcile ecological and evolutionary approaches through the concept of the ecological niche. We specifically present a tri-trophic niche concept as a foil to the traditional bi-trophic niche concept for phytophagous insects. We argue that these niche concepts have different implications for understanding herbivore community structure, population divergence, and evolutionary diversification. To this end, we offer contrasting empirical predictions of bi- and tri-trophic niche concepts for patterns of community structure, the process of population divergence, and patterns of evolutionary diversification of phytophagous insects. [source] On the relationship between niche and distributionECOLOGY LETTERS, Issue 4 2000H.R. Pulliam Applications of Hutchinson's n -dimensional niche concept are often focused on the role of interspecific competition in shaping species distribution patterns. In this paper, I discuss a variety of factors, in addition to competition, that influence the observed relationship between species distribution and the availability of suitable habitat. In particular, I show that Hutchinson's niche concept can be modified to incorporate the influences of niche width, habitat availability and dispersal, as well as interspecific competition per se. I introduce a simulation model called NICHE that embodies many of Hutchinson's original niche concepts and use this model to predict patterns of species distribution. The model may help to clarify how dispersal, niche size and competition interact, and under what conditions species might be common in unsuitable habitat or absent from suitable habitat. A brief review of the pertinent literature suggests that species are often absent from suitable habitat and present in unsuitable habitat, in ways predicted by theory. However, most tests of niche theory are hampered by inadequate consideration of what does and does not constitute suitable habitat. More conclusive evidence for these predictions will require rigorous determination of habitat suitability under field conditions. I suggest that to do this, ecologists must measure habitat specific demography and quantify how demographic parameters vary in response to temporal and spatial variation in measurable niche dimensions. [source] Determining trophic niche width: a novel approach using stable isotope analysisJOURNAL OF ANIMAL ECOLOGY, Issue 5 2004STUART BEARHOP Summary 1Although conceptually robust, it has proven difficult to find practical measures of niche width that are simple to obtain, yet provide an adequate descriptor of the ecological position of the population examined. 2Trophic niche has proven more tractable than other niche dimensions. However, indices used as a proxy for trophic niche width often suffer from the following difficulties. Such indices rarely lie along a single scale making comparisons between populations or species difficult; have difficulty in combining dietary prey diversity and evenness in an ecologically meaningful way; and fail to integrate diet over ecological time-scales thus usually only comprise single snapshots of niche width. 3We propose an alternative novel method for the comparison of trophic niche width: the use of variance of tissue stable isotope ratios, especially those of nitrogen and carbon. 4This approach is a potentially powerful method of measuring trophic niche width, particularly if combined with conventional approaches, because: it provides a single measure on a continuous axis that is common to all species; it integrates information on only assimilated prey over time; the integration period changes with choice of tissue sampled; and data production is theoretically fast and testing among populations simple. 5Empirical studies are now required to test the benefits of using isotopic variance as a measure of niche width, and in doing so help refine this approach. [source] Seasonal variation in terrestrial resource subsidies influences trophic niche width and overlap in two aquatic snake species: a stable isotope approachOIKOS, Issue 7 2010John D. Willson Quantifying diet is essential for understanding the functional role of species with regard to energy processing, transfer, and storage within ecosystems. Recently, variance structure in the stable isotope composition of consumer tissues has been touted as a robust tool for quantifying trophic niche width, a task that has previously proven difficult due to bias in direct dietary analyses and difficulties in integrating diet composition over time. We used carbon and nitrogen stable isotope analyses to examine trophic niche width of two sympatric aquatic snakes, banded watersnakes Nerodia fasciata and black swamp snakes Seminatrix pygaea inhabiting an isolated wetland where seasonal migrations of amphibian prey cause dramatic shifts in resource availability. Specifically, we characterized snake and prey isotope compositions through time, space, and ontogeny and examined isotope values in relation to prey availability and snake diets assessed by gut content analysis. We determined that prey cluster into functional groups based on similarity of isotopic composition and seasonal availability. Isotope variance structure indicated that the trophic niche width of the banded watersnake was broader (more generalist) than that of the black swamp snake. Banded watersnakes also exhibited seasonal variation in isotope composition, suggesting seasonal diet shifts that track amphibian prey availability. Conversely, black swamp snakes exhibited little seasonal variation but displayed strong ontogenetic shifts in carbon and nitrogen isotope composition that closely paralleled ontogenetic shifts in their primary prey, paedomorphic mole salamanders Ambystoma talpoideum. Although niche dimensions are often treated as static, our results demonstrate that seasonal shifts in niche dimensions can lead to changes in niche overlap between sympatric species. Such short-term fluctuations in niche overlap can influence competitive interactions and consequently the composition and dynamics of communities and ecosystems. [source] Typology in Mediterranean transitional waters: new challenges and perspectivesAQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue 5 2006A. Basset Abstract 1.Transitional waters are ecotones between terrestrial, freshwater and marine ecosystems, being characterized by high spatial heterogeneity and temporal variability. 2.The EU Water Framework Directive (WFD) posed to the scientific community the challenge to classify these ecosystems into a small number of types, while retaining a functional classification of ecosystem types. 3.A niche theory approach is proposed to identify the limiting forcing factors organizing biological quality elements, i.e. the limiting niche dimensions. 4.The analysis of a macro-invertebrate dataset from published papers on 36 Italian lagoons suggested a two-level typological classification of Mediterranean lagoons. 5.Basic ecological theories, such as niche and island biogeography theories, have fundamental implications for the process of developing a typological classification for all aquatic ecosystems, as required by the WFD. Copyright © 2006 John Wiley & Sons, Ltd. [source] |