Archival Tags (archival + tag)

Distribution by Scientific Domains

Kinds of Archival Tags

  • pop-up satellite archival tag
  • satellite archival tag


  • Selected Abstracts


    Near real-time spatial management based on habitat predictions for a longline bycatch species

    FISHERIES MANAGEMENT & ECOLOGY, Issue 6 2006
    A. J. HOBDAY
    Abstract, Southern bluefin tuna (SBT), Thunnus maccoyii (Castelnau), is a quota-managed species that makes annual winter migrations to the Tasman Sea off south-eastern Australia. During this period it interacts with a year-round tropical tuna longline fishery (Eastern Tuna and Billfish Fishery, ETBF). ETBF managers seek to minimise the bycatch of SBT by commercial ETBF longline fishers with limited or no SBT quota through spatial restrictions. Access to areas where SBT are believed to be present is restricted to fishers holding SBT quota. A temperature-based SBT habitat model was developed to provide managers with an estimate of tuna distribution upon which to base their decisions about placement of management boundaries. Adult SBT temperature preferences were determined using pop-up satellite archival tags. The near real-time predicted location of SBT was determined by matching temperature preferences to satellite sea surface temperature data and vertical temperature data from an oceanographic model. Regular reports detailing the location of temperature-based SBT habitat were produced during the period of the ETBF fishing season when interactions with SBT occur. The SBT habitat model included: (i) predictions based on the current vertical structure of the ocean; (ii) seasonally adjusted temperature preference data for the 60 calendar days centred on the prediction date; and (iii) development of a temperature-based SBT habitat climatology that allowed visualisation of the expected change in the distribution of the SBT habitat zones throughout the season. At the conclusion of the fishing season an automated method for placing management boundaries was compared with the subjective approach used by managers. Applying this automated procedure to the habitat predictions enabled an investigation of the effects of setting management boundaries using old data and updating management boundaries infrequently. Direct comparison with the management boundaries allowed an evaluation of the efficiency and biases produced by this aspect of the fishery management process. Near real-time fishery management continues to be a realistic prospect that new scientific approaches using novel tools can support and advance. [source]


    Movement and behaviour of large southern bluefin tuna (Thunnus maccoyii) in the Australian region determined using pop-up satellite archival tags

    FISHERIES OCEANOGRAPHY, Issue 5 2008
    TOBY A. PATTERSON
    Abstract Pop-up satellite archival tags (PSATs) were deployed on 52 large (156,200 cm length to caudal fork) southern bluefin tuna (Thunnus maccoyii) in the western Tasman Sea during the austral winters of 2001,2005. Southern bluefin tuna (SBT) were resident in the Tasman Sea for up to 6 months with movements away from the tagging area occurring at highly variable rates. The data indicated a general tendency for SBT to move south from the tagging area in the Western Tasman Sea. Four individuals migrated west along the southern continental margin of Australia and into the Indian Ocean. Three individuals moved east into the central Tasman Sea, with one individual reaching New Zealand. We also describe the first observed migration of an SBT from the Tasman Sea to the Indian Ocean spawning grounds south of Indonesia. Individuals spent most of their time relatively close to the Australian coast, with an estimated 84% of time spent in the Australian Fishing Zone. SBT favored temperatures between 19 and 21°C, adjusting their depth to the vertical temperature distribution. Distinct diurnal diving patterns were observed and adjustment of depth to maintain constant ambient light levels over a 24-h period. The findings of this study are a significant advance toward greater understanding of the spatial dynamics of large SBT and understanding the connectivity between distant regions of their distribution. [source]


    Bigeye tuna (Thunnus obesus) vertical movements in the Azores Islands determined with pop-up satellite archival tags

    FISHERIES OCEANOGRAPHY, Issue 2 2008
    H. ARRIZABALAGA
    Abstract Movement patterns of 17 bigeye tuna (Thunnus obesus) near the Azores Islands were analyzed between April and May 2001 and 2002 using pop-up satellite archival tags. Despite short attachment durations (1 to 21 days, 8.2 days on average), their vertical movements revealed much shallower distribution of bigeye tuna in comparison with previous studies in the tropical Pacific and tropical Atlantic. Depth and temperature histograms were unimodal, although overall depth distribution during the day was deeper than during the night due to daily incursions in deeper waters. Although generalized additive models showed significant non-linear relationships with weight of the fish and sea level anomaly (as a proxy for variability of thermocline depth), the effect of these variables on bigeye depth appeared minor, suggesting that vertical movements of bigeye in the Azores during the spring migration may be influenced by food availability in upper water layers. [source]


    Geolocation of Atlantic cod (Gadus morhua) movements in the Gulf of Maine using tidal information

    FISHERIES OCEANOGRAPHY, Issue 4 2007
    J. P. GRÖGER
    Abstract Information derived from archival tags (digital storage tags, DSTs) were used to backtrack the migration of 11 tagged Atlantic cod (Gadus morhua) during 2001 in Massachusetts Bay, the Gulf of Maine, and Georges Bank. The DST tags continuously recorded time, temperature and depth. To geolocate fish positions during its time at large, we first extracted the tidal signal from the pressure recordings on the DST tags, and then compared the resulting data to data predicted with a Massachusetts Bay tidal model that provided us with geographical coordinates at a given date and time. Using least-squares criteria within an estimated geographical region of confidence that was constrained by biological and statistical information (e.g. swimming speed, known release and recapture location, and bottom depth) we were able to geolocate the fish. The resultant geolocated migration tracks indicate a large degree of movement of Atlantic cod in the region and an elevated importance of the Great South Channel (GSC) migration corridor between Massachusetts Bay and the western Georges Bank and Nantucket Shoals region. This observation contrasts strongly with inferences of limited movements by Atlantic cod based on conventional tag recapture methods (mean of 1200 km traveled versus 44 km traveled as measured by conventional tagging and geolocation, respectively). This study demonstrates that geolocation methodologies applied to archival tag studies hold great promise of becoming an important new tool for fisheries managers to quantify the movements of fishes. It also points out the need for greater collaboration between fisheries scientists and oceanographers, and particularly for the development of improved tidal models to cover stock regions more accurately and with higher precision. [source]


    Diving behavior of immature, feeding Pacific bluefin tuna (Thunnus thynnus orientalis) in relation to season and area: the East China Sea and the Kuroshio,Oyashio transition region

    FISHERIES OCEANOGRAPHY, Issue 3 2004
    Takashi Kitagawa
    Abstract Twenty-four archival tags were recovered from Pacific bluefin tuna previously released off Tsushima Island in the East China Sea. By analysis of the time-series data of the pressure and the ambient and internal temperature from the 24 tags, we examined the relationship between the tuna's pattern of diving and the thermocline depth. In the East China Sea, diving and feeding events occurred throughout almost the entire day in both winter and summer, suggesting that the purpose of diving is for feeding. In summer, the feeding frequency was greater than that in winter, which corresponds to the fact that growth is more rapid in summer than in winter. During summer in the Kuroshio,Oyashio transition region, on the other hand, feeding events were much more frequent than those in the East China Sea, in spite of a lower diving frequency. The mean horizontal distance traveled was also significantly higher and it seems that in this area they may move horizontally to feed on prey accumulated at the surface. We conclude that, in addition to the ambient temperature structure, the vertical and horizontal distribution of prey species plays an important role in the feeding behavior of Pacific bluefin tuna. One bluefin tuna migrated to the Oyashio frontal area, where both the horizontal and the vertical thermal gradients are much steeper. The fish spent most of the time on the warmer side of the front and often traveled horizontally to the colder side during the day, perhaps to feed. This implies that there is a thermal barrier effect, in this case from the Oyashio front, on their behavior. The frequency of feeding events was low, although all the monitored fish dived every dawn and dusk, irrespective of the seasons or location. It is possible that these twice-daily diving patterns occurred in response to the change in ambient light at sunrise and sunset. [source]


    Vertical movements of bigeye tuna (Thunnus obesus) associated with islands, buoys, and seamounts near the main Hawaiian Islands from archival tagging data

    FISHERIES OCEANOGRAPHY, Issue 3 2003
    Michael K. Musyl
    Abstract To learn more about the movement patterns of bigeye tuna (Thunnus obesus), we deployed archival tags on 87 fish ranging in fork length from 50 to 154 cm. Thirteen fish were recaptured, from which 11 archival tags were returned, representing in aggregate 943 days-at-liberty. We successfully retrieved data from 10 tags, representing 474 days in aggregate. The largest fish recaptured was 44.5 kg [131 cm fork length (FL)] and the smallest 2.8 kg (52 cm). The deepest descent recorded was 817 m, the coldest temperature visited 4.7°C, and minimum oxygen level reached ,1 mL L,1. Fish spent little time at depths where water temperatures were below 7°C and oxygen levels less than ,2 mL L,1. Five fish were recaptured near the offshore weather buoy where they were tagged. Based on vertical movement patterns, it appeared that all stayed immediately associated with the buoy for up to 34 days. During this time they remained primarily in the uniform temperature surface layer (i.e. above 100 m). In contrast, fish not associated with a floating object showed the W-shaped vertical movement patterns during the day characteristic of bigeye tuna (i.e. descending to ,300,500 m and then returning regularly to the surface layer). Four fish were tagged and subsequently recaptured near Cross Seamount up to 76 days later. These fish exhibited vertical movement patterns similar to, but less regular than, those of fish not associated with any structure. Bigeye tuna appear to follow the diel vertical movements of the deep sound scattering layer (SSL) organisms and thus to exploit them effectively as a prey resource. Average night-time depth was correlated with lunar illumination, a behaviour which mimics movements of the SSL. [source]


    Feeding ecology of wild migratory tunas revealed by archival tag records of visceral warming

    JOURNAL OF ANIMAL ECOLOGY, Issue 6 2008
    Sophie Bestley
    Summary 1Seasonal long-distance migrations are often expected to be related to resource distribution, and foraging theory predicts that animals should spend more time in areas with relatively richer resources. Yet for highly migratory marine species, data on feeding success are difficult to obtain. We analysed the temporal feeding patterns of wild juvenile southern bluefin tuna from visceral warming patterns recorded by archival tags implanted within the body cavity. 2Data collected during 1998,2000 totalled 6221 days, with individual time series (n = 19) varying from 141 to 496 days. These data span an annual migration circuit including a coastal summer residency within Australian waters and subsequent migration into the temperate south Indian Ocean. 3Individual fish recommenced feeding between 5 and 38 days after tagging, and feeding events (n = 5194) were subsequently identified on 76·3 ± 5·8% of days giving a mean estimated daily intake of 0·75 ± 0·05 kg. 4The number of feeding events varied significantly with time of day with the greatest number occurring around dawn (58·2 ± 8·0%). Night feeding, although rare (5·7 ± 1·3%), was linked to the full moon quarter. Southern bluefin tuna foraged in ambient water temperatures ranging from 4·9 °C to 22·9 °C and depths ranging from the surface to 672 m, with different targeting strategies evident between seasons. 5No clear relationship was found between feeding success and time spent within an area. This was primarily due to high individual variability, with both positive and negative relationships observed at all spatial scales examined (grid ranges of 2 × 2° to 10 × 10°). Assuming feeding success is proportional to forage density, our data do not support the hypothesis that these predators concentrate their activity in areas of higher resource availability. 6Multiple-day fasting periods were recorded by most individuals. The majority of these (87·8%) occurred during periods of apparent residency within warmer waters (sea surface temperature > 15 °C) at the northern edge of the observed migratory range. These previously undocumented nonfeeding periods may indicate alternative motivations for residency. 7Our results demonstrate the importance of obtaining information on feeding when interpreting habitat utilization from individual animal tracks. [source]