Architectural Properties (architectural + property)

Distribution by Scientific Domains


Selected Abstracts


Architectural properties of the first dorsal interosseous muscle

JOURNAL OF ANATOMY, Issue 4 2010
Benjamin W. Infantolino
Abstract Muscle architecture is considered to reflect the function of muscle in vivo, and is important for example to clinicians in designing tendon-transfer and tendon-lengthening surgeries. The purpose of this study was to quantify the architectural properties of the FDI muscle. It is hypothesized that there will be consistency, that is low variability, in the architectural parameters used to describe the first dorsal interosseous muscle because of its clear functional role in index finger motion. The important architectural parameters identified were those required to characterize a muscle adequately by modeling. Specifically the mass, cross-sectional area, and length of the tendon and muscle were measured in cadavers along with the muscle fiber optimum length and pennation angle, and the moment arm of the first dorsal interosseous at the metacarpophalangeal joint. These parameters provide a characterization of the architecture of the first dorsal interosseous, and were used to indicate the inherent variability between samples. The results demonstrated a large amount of variability for all architectural parameters measured; leading to a rejection of the hypothesis. Ratios designed to describe the functioning of the muscles in vivo, for example the ratio of tendon to fiber optimum lengths, also demonstrated a large variability. The results suggest that function cannot be deduced from form for the first dorsal interosseous, and that subject-specific architectural parameters may be necessary for the formulation of accurate musculoskeletal models or making clinical decisions. [source]


Food web complexity and chaotic population dynamics

ECOLOGY LETTERS, Issue 3 2002
Gregor F. Fussmann
Abstract In mathematical models, very simple communities consisting of three or more species frequently display chaotic dynamics which implies that long-term predictions of the population trajectories in time are impossible. Communities in the wild tend to be more complex, but evidence for chaotic dynamics from such communities is scarce. We used supercomputing power to test the hypothesis that chaotic dynamics become less frequent in model ecosystems when their complexity increases. We determined the dynamical stability of a universe of mathematical, nonlinear food web models with varying degrees of organizational complexity. We found that the frequency of unpredictable, chaotic dynamics increases with the number of trophic levels in a food web but decreases with the degree of complexity. Our results suggest that natural food webs possess architectural properties that may intrinsically lower the likelihood of chaotic community dynamics. [source]


Architectural properties of the first dorsal interosseous muscle

JOURNAL OF ANATOMY, Issue 4 2010
Benjamin W. Infantolino
Abstract Muscle architecture is considered to reflect the function of muscle in vivo, and is important for example to clinicians in designing tendon-transfer and tendon-lengthening surgeries. The purpose of this study was to quantify the architectural properties of the FDI muscle. It is hypothesized that there will be consistency, that is low variability, in the architectural parameters used to describe the first dorsal interosseous muscle because of its clear functional role in index finger motion. The important architectural parameters identified were those required to characterize a muscle adequately by modeling. Specifically the mass, cross-sectional area, and length of the tendon and muscle were measured in cadavers along with the muscle fiber optimum length and pennation angle, and the moment arm of the first dorsal interosseous at the metacarpophalangeal joint. These parameters provide a characterization of the architecture of the first dorsal interosseous, and were used to indicate the inherent variability between samples. The results demonstrated a large amount of variability for all architectural parameters measured; leading to a rejection of the hypothesis. Ratios designed to describe the functioning of the muscles in vivo, for example the ratio of tendon to fiber optimum lengths, also demonstrated a large variability. The results suggest that function cannot be deduced from form for the first dorsal interosseous, and that subject-specific architectural parameters may be necessary for the formulation of accurate musculoskeletal models or making clinical decisions. [source]


Black bear femoral geometry and cortical porosity are not adversely affected by ageing despite annual periods of disuse (hibernation)

JOURNAL OF ANATOMY, Issue 2 2007
Meghan E. McGee
Abstract Disuse (i.e. inactivity) causes bone loss, and a recovery period that is 2,3 times longer than the inactive period is usually required to recover lost bone. However, black bears experience annual disuse (hibernation) and remobilization periods that are approximately equal in length, yet bears maintain or increase cortical bone material properties and whole bone mechanical properties with age. In this study, we investigated the architectural properties of bear femurs to determine whether cortical structure is preserved with age in bears. We showed that cross-sectional geometric properties increase with age, but porosity and resorption cavity density do not change with age in skeletally immature male and female bears. These findings suggest that structural properties substantially contribute to increasing whole bone strength with age in bears, particularly during skeletal maturation. Porosity was not different between skeletally immature and mature bears, and showed minimal regional variations between anatomical quadrants and radial positions that were similar in pattern and magnitude between skeletally immature and mature bears. We also found gender dimorphisms in bear cortical bone properties: females have smaller, less porous bones than males. Our results provide further support for the idea that black bears possess a biological mechanism to prevent disuse osteoporosis. [source]


Structural acclimation and radiation regime of silver fir (Abies alba Mill.) shoots along a light gradient

PLANT CELL & ENVIRONMENT, Issue 3 2003
A. CESCATTI
ABSTRACT Shoot architecture has been investigated using the ratio of mean shoot silhouette area to total needle area ( ) as a structural index of needle clumping in shoot space, and as the effective extinction coefficient of needle area. Although can be used effectively for the prediction of canopy gap fraction, it does not provide information about the within-shoot radiative regime. For this purpose, the estimation of three architectural properties of the shoots is required: needle area density, angular distribution and spatial aggregation. To estimate these features, we developed a method based on the inversion of a Markov three-dimensional interception model. This approach is based on the turbid medium approximation for needle area in the shoot volume, and assumes an ellipsoidal angular distribution of the normals to the needle area. Observed shoot dimensions and silhouette areas for different vertical and azimuth angles (AS) are used as model inputs. The shape coefficient of the ellipsoidal distribution (c) and the Markov clumping index (,0) are estimated by a least square procedure, in order to minimize the differences between model prediction and measurements of AS. This methodology was applied to silver fir (Abies alba Mill.) shoots collected in a mixed fir,beech,spruce forest in the Italian Alps. The model worked effectively over the entire range of shoot morphologies: c ranged from 1 to 8 and ,0 from 0·3 to 1 moving from the top to the base of the canopy. Finally, the shoot model was applied to reconstruct the within-shoot light regime, and the potential of this technique in upscaling photosynthesis to the canopy level is discussed. [source]