Home About us Contact | |||
Newtonian Fluid (newtonian + fluid)
Kinds of Newtonian Fluid Selected AbstractsThe use of transient pressure analysis at the Dounreay Shaft Isolation Project.GEOMECHANICS AND TUNNELLING, Issue 5 2009Die Verwendung der Analyse instationärer Druckentwicklung am Dounreay Schachtabdichtungsprojekt Grouting; Innovative methods; Injektionen; Neue Verfahren Abstract This paper provides an assessment of the use of pressure fall-off data during the Dounreay Shaft Isolation Project. The instrumentation controlling the injection of grout monitors and records both the pressure and the flow rate throughout the process, so pressure fall-off data is collected during any pauses to, and at the end of, each grout injection. The shapes of the pressure fall-off vs time curves have been examined qualitatively and categorised. The fall-off data has also been examined using PanSystem well test software, which creates the pressure change and pressure derivative curves, then attempts to simulate the fall-off curve by iteration after selection of a flow and boundary model chosen from the wide range available. The implications that the shapes of the pressure and derivative curves and the flow and boundary models have for the grout curtain have been examined. The caveats that surround the quantitative use of results from Pan-System analyses for a cement grout rather than a Newtonian fluid are discussed. Diese Veröffentlichung handelt von der Beurteilung des Einsatzes und der Analyse von Daten zum Druckabfall im Zuge der Injektion am Schachtabdichtungsprojekt Dounreay, Schottland, UK. Die Instrumentation der Baustelle war darauf ausgelegt, Messwerte von Druck und Injektionsrate anzuzeigen, aufzuzeichnen und als Diagramm darzustellen. Damit war es möglich, in jeder Injektionsunterbrechung (also bei Rate = Null) und zu jedem Passenende Druckabfalldaten aufzuzeichnen. Die Form dieser Druckabfallkurven gegen die Zeit wurde qualitativ untersucht und kategorisiert. Eine weitere Interpretation dieser Daten erfolgte mittels des Programms "PanSystem". Bei dieser Methodik werden die Druckänderungen über kleine Zeitinkremente errechnet und deren Ableitung über die Zeit in Kurvenform dargestellt. Durch iterative Simulation und Eingabe von Randbedingungen ("boundaries") für das jeweilige Strömungsmodell , ausgewählt aus einer weiten Bandbreite von Möglichkeiten , ergibt sich die Möglichkeit, u. a. die Strömungsdimension, Strömungshindernisse und Reichweite der Injektion zu prognostizieren. Die daraus gezogenen Schlüsse für den Injektionsschirm wurden für die qualitative Abnahme der Arbeiten mitverwendet. In dem vorliegenden Artikel wird auch auf die möglichen Vorbehalte eingegangen, die sich aus den rheologischen Abweichungen von Injektionsmischungen gegenüber einer Newtonschen Flüssigkeit ergeben. [source] The role of friction and secondary flaws on deflection and re-initiation of hydraulic fractures at orthogonal pre-existing fracturesGEOPHYSICAL JOURNAL INTERNATIONAL, Issue 3 2006Xi Zhang SUMMARY In this study, we explore the nature of plane-strain hydraulic fracture growth in the presence of pre-existing fractures such as joints without or with secondary flaws. The 2-D plane-strain fracture studied can be taken as a cross-section through the short dimensions of an elongated 3-D fracture or as an approximate representation of the leading edge of a 3-D fracture where the edge curvature is negligible. The fluid-driven fracture intersects a pre-existing fracture to which it is initially perpendicular and is assumed not to immediately cross, but is rather deflected into the pre-existing fracture. The intersection results in branching of the fracture and associated fluid flow into the pre-existing fracture. Further growth results in opening and frictional sliding along the pre-existing fracture. Fracture propagation in an impermeable homogeneous elastic medium and fluid invasion into a pre-existing fracture are both driven by an incompressible, Newtonian fluid injected at a constant rate. The frictional stress on the surfaces of pre-existing fractures is assumed to obey the Coulomb law. The governing equations for quasi-static fluid-driven fracture growth are given and a scaling is introduced to help identify important parameters. The displacement discontinuity method and the finite difference method are employed to deal with this coupling mechanism of rock fracture and fluid flow. In order to account for fluid lag, a method for separately tracking the crack tip and the fluid front is included in the numerical model. Numerical results are obtained for internal pressure, frictional contact stresses, opening and shear displacements, and fluid lag size, as well as for fracture re-initiation from secondary flaws. After fracture intersection, the hydraulic fracture growth mode changes from tensile to shearing. This contributes to increased injection pressure and to a reduction in fracture width. In the presence of pre-existing fractures, the fluid-driven cracks can be arrested or retarded in growth rate as a result of diversion of fluid flow into and frictional sliding along the pre-existing fractures. Frictional behaviour significantly affects the ability of the fluid to enter or penetrate the pre-existing fracture only for those situations where the fluid front is within a certain distance from the intersecting point. Importantly, fluid penetration requires higher injection pressure for frictionally weak pre-existing fractures. Fracture re-initiation from secondary flaws can reduce the injection pressure, but re-initiation is suppressed by large sliding on pre-existing fractures that are frictionally weak. [source] Experimental investigation of turbulent boundary layer flow with surfactant additives using PIV and PDAHEAT TRANSFER - ASIAN RESEARCH (FORMERLY HEAT TRANSFER-JAPANESE RESEARCH), Issue 2 2005Wang Dezhong Abstract Drag reduction of turbulent water flow with surfactant (CTAC) additives was experimentally investigated. By using PIV and PDA measurements, the spatial velocity distribution of surfactant solution flow was clarified in a two-dimensional water channel. With an increasing Reynolds number, it was found that drag reduction of surfactant solution flow is enhanced within the region of drag reduction. However, in the region of post drag reduction, the drag-reducing coefficient approaches one without surfactant when Reynolds number is increased. In the near-wall region, velocity profiles of the drag-reducing fluid are similar to, but not the same as, the laminar profiles of the Newtonian fluid. When compared to the case of water flow without surfactant, the velocity contour lines of the drag-reducing fluid run approximately parallel to the wall. © 2005 Wiley Periodicals, Inc. Heat Trans Asian Res, 34(2): 99,107, 2005; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/htj.20047 [source] About Darcy's law in non-Galilean frameINTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 3 2004C. Geindreau Abstract This paper is aimed towards investigating the filtration law of an incompressible viscous Newtonian fluid through a rigid non-inertial porous medium (e.g. a porous medium placed in a centrifuge basket). The filtration law is obtained by upscaling the flow equations at the pore scale. The upscaling technique is the homogenization method of multiple scale expansions which rigorously gives the macroscopic behaviour and the effective properties without any prerequisite on the form of the macroscopic equations. The derived filtration law is similar to Darcy's law, but the tensor of permeability presents the following remarkable properties: it depends upon the angular velocity of the porous matrix, it verifies Hall,Onsager's relationship and it is a non-symmetric tensor. We thus deduce that, under rotation, an isotropic porous medium leads to a non-isotropic effective permeability. In this paper, we present the results of numerical simulations of the flow through rotating porous media. This allows us to highlight the deviations of the flow due to Coriolis effects at both the microscopic scale (i.e. the pore scale), and the macroscopic scale (i.e. the sample scale). The above results confirm that for an isotropic medium, phenomenological laws already proposed in the literature fails at reproducing three-dimensional Coriolis effects in all types of pores geometry. We show that Coriolis effects may lead to significant variations of the permeability measured during centrifuge tests when the inverse Ekman number Ek,1 is ,,(1). These variations are estimated to be less than 5% if Ek,1<0.2, which is the case of classical geotechnical centrifuge tests. We finally conclude by showing that available experimental data from tests carried out in centrifuges are not sufficient to determining the effective tensor of permeability of rotating porous media. Copyright © 2004 John Wiley & Sons, Ltd. [source] Numerical simulation of two-dimensional transient water driven non-Newtonian fluid flow in porous mediaINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, Issue 4 2002Zuojin Zhu Abstract Numerical simulation of two-dimensional transient water driven non-Newtonian fluid flow in porous media has been performed. The hyperbolic non-Newtonian fluid model was used to describe the characteristics of non-Newtonian fluid flow. Governing equations were first approximated by implicit finite difference, and then solved by a stabilized bi-conjugate gradient (Bi-CGSTAB) approach. A comparison of the numerical results for the case of water driven Newtonian fluid was made to validate the numerical method. For water driven Newtonian fluid flow, it was found that the numerical results are satisfactorily consistent with those obtained by commercial software VIP which is the abbreviation of vector implicit procedure for numerical simulation of Newtonian fluid flow in porous media. The maximum deviation for average pressure is less than 1.5 per cent; the distribution of water saturation is almost the same as that obtained by VIP. For water driven non-Newtonian fluid flow in porous media, it was found that the factor of pressure gradient of the non-Newtonian fluid has significant effects on the process of oil recovery. The correction of numerical simulation based on the global mass balance plays an important role in oil reservoir simulation. Copyright © 2002 John Wiley & Sons, Ltd. [source] Numerical simulation of one-dimensional flows through porous media with shock wavesINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 10 2001Maria Laura Martins-Costa Abstract This work studies an unsaturated flow of a Newtonian fluid through a rigid porous matrix, using a mixture theory approach in its modelling. The mixture consists of three overlapping continuous constituents: a solid (porous medium), a liquid (Newtonian fluid) and an inert gas (to account for the mixture compressibility). A set of two nonlinear partial differential equations describes the problem, which is approximated by means of a Glimm's scheme, combined with an operator splitting technique. Copyright © 2001 John Wiley & Sons, Ltd. [source] Peristaltic transport and heat transfer of a MHD Newtonian fluid with variable viscosityINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 12 2010S. Nadeem Abstract The influence of temperature-dependent viscosity and magnetic field on the peristaltic flow of an incompressible, viscous Newtonian fluid is investigated. The governing equations are derived under the assumptions of long wavelength approximation. A regular perturbation expansion method is used to obtain the analytical solutions for the velocity and temperature fields. The expressions for the pressure rise, friction force and the relation between the flow rate and pressure gradient are obtain. In addition to analytical solutions, numerical results are also computed and compared with the analytical results with good agreement. The results are plotted for different values of variable viscosity parameter ,, Hartmann number M, and amplitude ratio ,. It is found that the pressure rise decreases as the viscosity parameter , increases and it increases as the Hartmann number M increases. Finally, the maximum pressure rise (,=0) increases as M increases and , decreases. Copyright © 2009 John Wiley & Sons, Ltd. [source] COMPUTATIONAL FLUID DYNAMICS MODELING OF FLUID FLOW IN HELICAL TUBESJOURNAL OF FOOD PROCESS ENGINEERING, Issue 2 2002T. KORAY PALAZOGLU ABSTRACT The effect of different processing parameters on the degree of mixing and axial and radial pressure drops, during single-phase flow in helical tubes was investigated by using CFD software. Correlations were developed to calculate axial and radial pressure drops, and also the ratio of maximum to average fluid velocities. All of these quantities were found to be dependent on curvature ratio (ratio of tube diameter to coil diameter). Flow visualization experiments were performed to assess the degree of mixing in different configurations. At identical conditions, the degree of mixing was higher in the system with the large curvature ratio, which is in agreement with the simulation results. A minimum ratio of maximum to average fluid velocities of 1.61 was achieved, representing a 20% reduction in hold tube length for Newtonian fluid in laminar flow. [source] Simulation of particle migration in free-surface flowsAICHE JOURNAL, Issue 10 2010Kyung Hoon Min Abstract The migration of particles in free surface flows using the diffusive flux model was investigated. As the free-surface flows, a planar jet flow and a slot coating flow were chosen. The suspension was assumed to be a Newtonian fluid with a particle concentration dependent viscosity. The governing equations were solved numerically by the finite volume method, and the free-surface problem was handled by the volume of the fraction model. The result shows that even though the velocity profile is fully developed and becomes flat, the particle distribution never reaches the uniform distribution for both of the cases. It is also shown that the die swell of the free jet is reduced compared to the Newtonian fluid and when the particle loading is 0.5, die contraction is observed. The change in die swell characteristics is purely due to particle migration since the suspension model does not show normal stress differences. © 2010 American Institute of Chemical Engineers AIChE J, 2010 [source] RHEOLOGICAL BEHAVIOUR OF CLARIFIED MANGO JUICE CONCENTRATESJOURNAL OF TEXTURE STUDIES, Issue 3 2000NGASEPPAM IBOYAIMA SINGH ABSTRACT The rheological behaviour of clarified mango juice was measured at temperatures 15,85C and concentrations 15,66 °Brix, using a rotoviscometer. Mango juice free of pectin and pulp behaves as a Newtonian fluid. The effect of temperature can be described by an Arrhenius-type equation. The activation energy for viscous flow was in the range of 1.64,8.44 kcal/g-mol, depending on the concentration. The effect of concentration was modelled better by an exponential relationship than a power-law relationship. Simple equations are proposed for describing the combined effect of temperature and soluble solids content on the juice viscosity. [source] Instabilities and bifurcations in lid-driven cavity flowsPROCEEDINGS IN APPLIED MATHEMATICS & MECHANICS, Issue 1 2003Hendrik C. Kuhlmann Dr. The three-dimensional flow of an incompressible Newtonian fluid in a rectangular slab is calculated numerically using a pseudo-spectral method. The fluid motion is driven by two facing sidewalls which can move in parallel or anti-parallel directions. Examples for bifurcations from two-dimensional to three-dimensional flows are given for spanwise periodic systems. For a comparison with previous experimental results rigid end walls are also considered. Differences between periodic and rigid end conditions are highlighted. [source] Enhanced mixing of Newtonian fluids in a stirred vessel using impeller speed modulationTHE CANADIAN JOURNAL OF CHEMICAL ENGINEERING, Issue 6 2009Wei M. Yek Abstract This paper reports on an experimental study of mixing intensification using speed modulation of a six-blade Rushton turbine in a stirred vessel. Mixing times were measured using a non-intrusive technique based on direct visualisation of an acid-base reaction in a Newtonian fluid. The impeller speed modulation was achieved by using two waveforms: a square wave and a sine wave. The amplitude was fixed between a maximum Reynolds number of Remax,=,60 and minimum Reynolds numbers of Remin,=,40 or 30. The wave periods were varied (10, 20, or 40,s) in order to compare the effects of unsteady stirring on mixing performance. It was observed that a square wave protocol with the shortest wave period and the larger amplitude resulted in the shortest time to destroy the observed isolated mixing regions (IMRs), which are known to exist in stirred vessels operating at low Reynolds number. However, the sine wave protocol led to a slow diffusive mechanism in which IMR structures reached an asymptotic volume and remained visible even after several hours. The results are presented and discussed using digital photographs taken at different time intervals during experimentation. Ce papier présente une étude experimentale concernant l'intensification du mélange en modulant la vitesse d'une turbine de type Rushton a six palettes dans une cuve agitée. Les temps de mélanges sont mesurés avec une technique non-intrusive basée sur la visualisation directe d'une réaction acide-base au sein d'un fluide Newtonien. La modulation de la vitesse de la turbine a été realisée en utilisant deux formes d'ondes: une onde carrée et une onde sinusoidale. L'amplitude de chaque onde a été fixée entre un nombre de Reynolds maximal de Remax,=,60 et un nombre de Reynolds minimal de Remin,=,40 ou 30. Les périodes des ondes étaient variées (10, 20 ou 40,s) dans le but de comparer les effets du mélange non-stationnaire sur les performances du systeme. Il a été observé que le protocole suivant l'onde carrée avec la periode la plus courte et l'amplitude la plus large produisait le temps le plus court necessaire pour la destruction des zones de mélanges isolées (IMRs), dont l'éxistense est connue dans les cuves a mélange opérant aux nombres de Reynolds bas. Toutefois, le protocol suivant une onde sinusoidale a conduit a un mechanisme de diffusion lent dans lequel les IMRs atteignies un volume symptotique et sont restées visibles après plusieurs heures. Les résultats sont présentés and discutés en utilisant des photographes digitales prises à des intervales de temps differents durant les éxperiences. [source] The conversion of an organometallic compound into an intercalated thin-layer amorphous structureAPPLIED ORGANOMETALLIC CHEMISTRY, Issue 10 2009M. R. Othman Abstract A thin alumina-hydrotalcite (Al-HT) film was fabricated from the synthesized boehmite and HT sol samples. The sols were a Newtonian fluid within 12 h of the sol synthesis and pseudo-plastic flow thereon. Co-precipitated HT demonstrated poorly crystallized periclase and spinel structures and apparent doublet peak of hydrotalcite at 2, = 39,44°, indicative of a disordered structure. The heated Al-HT sample demonstrated highly amorphous structure with single hydrotalcite peak but barely observed ,-alumina and ,-boehmite phases. The exfoliation of the spinel, gibbsite and periclase in the Al-HT was caused by the intercalation of boehmite into the HT layers that impeded the formation of the oxides phases. Copyright © 2009 John Wiley & Sons, Ltd. [source] Numerical Study of a Bio-Centrifugal Blood Pump With Straight Impeller Blade ProfilesARTIFICIAL ORGANS, Issue 2 2010Guoliang Song Abstract Computational fluid dynamic simulations of the flow in the Kyoto-NTN (Kyoto University, Kyoto, Japan) magnetically suspended centrifugal blood pump with a 16-straight-bladed impeller were performed in the present study. The flow in the pump was assumed as unsteady and turbulent, and blood was treated as a Newtonian fluid. At the impeller rotating speed of 2000 rpm and flow rate of 5 L/min, the pump produces a pressure head of 113.5 mm Hg according to the simulation. It was found that the double volute of the pump has caused symmetrical pressure distribution in the volute passages and subsequently caused symmetrical flow patterns in the blade channels. Due to the tangentially increasing pressure in the volute passages, the flow through the blade channels initially increases at the low-pressure region and then decreases due to the increased pressure. The reverse flow and vortices have been identified in the impeller blade channels. The high shear stress of the flow in the pump mainly occurred at the inlet and outlet of the blade channels, the beginning of the volute passages and the regions around the tips of the cutwater and splitter plate. Higher shear stress is obtained when the tips of the cutwater and splitter plate are located at the impeller blade trailing edges than when they are located at the middle of the impeller blade channel. It was found that the blood damage index assessed based on the blood corpuscle path tracing of the present pump was about 0.94%, which has the same order of magnitude as those of the clinical centrifugal pumps reported in the literature. [source] Nonlinear Smoluchowski velocity for electroosmosis of Power-law fluids over a surface with arbitrary zeta potentialsELECTROPHORESIS, Issue 5 2010Cunlu Zhao Abstract Electroosmotic flow of Power-law fluids over a surface with arbitrary zeta potentials is analyzed. The governing equations including the nonlinear Poisson,Boltzmann equation, the Cauchy momentum equation and the continuity equation are solved to seek exact solutions for the electroosmotic velocity, shear stress, and dynamic viscosity distributions inside the electric double layer. Specifically, an expression for the general Smoluchowski velocity is obtained for electroosmosis of Power-law fluids in a fashion similar to the classic Smoluchowski velocity for Newtonian fluids. The existing Smoluchowski slip velocities under two special cases, (i) for Newtonian fluids with arbitrary zeta potentials and (ii) for Power-law fluids with small zeta potentials, can be recovered from our derived formula. It is interesting to note that the general Smoluchowski velocity for non-Newtonian Power-law fluids is a nonlinear function of the electric field strength and surface zeta potentials; this is due to the coupling electrostatics and non-Newtonian fluid behavior, which is different from its counterpart for Newtonian fluids. This general Smoluchowski velocity is of practical significance in determining the flow rates in microfluidic devices involving non-Newtonian Power-law fluids. [source] Comparative study of lattice-Boltzmann and finite volume methods for the simulation of laminar flow through a 4:1 planar contractionINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 9 2004Yarub Y. Al-Jahmany Abstract In the present paper, a comparative study of numerical solutions for Newtonian fluids based on the lattice-Boltzmann method (LBM) and the classical finite volume method (FVM) is presented for the laminar flow through a 4:1 planar contraction at a Reynolds number of value one, Re=1. In this study, the stress field for LBM is directly obtained from the distribution function. The calculations of the stress based on the FVM-data use the evaluations of velocity gradients with finite differences. The stress field for both LBM and FVM is expressed in the present study in terms of the shear stress and the first normal stress difference. The lateral and axial profiles of the velocity, the shear stress and the first normal stress difference for both methods are investigated. It is shown that the LBM results for the velocity and the stresses are in excellent agreement with the FVM results. Copyright © 2004 John Wiley & Sons, Ltd. [source] Numerical approximation of generalized Newtonian fluids using Powell,Sabin,Heindl elements: I. theoretical estimatesINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 10 2003S.-S. Chow Abstract In this paper we consider the numerical approximation of steady and unsteady generalized Newtonian fluid flows using divergence free finite elements generated by the Powell,Sabin,Heindl elements. We derive a priori and a posteriori finite element error estimates and prove convergence of the method of successive approximations for the steady flow case. A priori error estimates of unsteady flows are also considered. These results provide a theoretical foundation and supporting numerical studies are to be provided in Part II. Copyright © 2003 John Wiley & Sons, Ltd. [source] Numerical simulation of mold filling in injection molding using a three-dimensional finite volume approachINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 2 2001Rong-yeu Chang Abstract This work presents an implicit finite volume approach to simulate the three-dimensional mold filling problems encountered during the injection molding. The described numerical model deals with the three-dimensional isothermal flow of incompressible, high-viscous Newtonian fluids with moving interfaces. The collocated finite volume method and the SIMPLE segregated algorithm are used to discretize and solve the Navier,Stokes equation. In addition, a bounded compressive high-resolution differencing scheme is adopted to solve the advection equation to capture the interface on a Eulerian framework. This approach effectively solves the flow field in terms of CPU time and memory storage as well as the complicated three-dimensional melt front topology. Several two- and three-dimensional examples are presented to validate the presented approach and illustrate its capabilities. This method can more accurately predict the critical three-dimensional phenomena encountered during mold filling than the existing Hele,Shaw analysis model. The presented numerical approach has been proven to be a highly effective and flexible tool for simulating mold filling problems. Copyright © 2001 John Wiley & Sons, Ltd. [source] NEURAL NETWORK MODELING OF END-OVER-END THERMAL PROCESSING OF PARTICULATES IN VISCOUS FLUIDSJOURNAL OF FOOD PROCESS ENGINEERING, Issue 2010YANG MENG ABSTRACT Modeling of the heat transfer process in thermal processing is important for the process design and control. Artificial neural networks (ANNs) have been used in recent years in heat transfer modeling as a potential alternative to conventional dimensionless correlation approach and shown to be even better performers. In this study, ANN models were developed for apparent heat transfer coefficients associated with canned particulates in high viscous Newtonian and non-Newtonian fluids during end-over-end thermal processing in a pilot-scale rotary retort. A portion of experimental data obtained for the associated heat transfer coefficients were used for training while the rest were used for testing. The principal configuration parameters were the combination of learning rules and transfer functions, number of hidden layers, number of neurons in each hidden layer and number of learning runs. For the Newtonian fluids, the optimal conditions were two hidden layers, five neurons in each hidden layer, the delta learning rule, a sine transfer function and 40,000 learning runs, while for the non-Newtonian fluids, the optimal conditions were one hidden layer, six neurons in each hidden layer, the delta learning rule, a hyperbolic tangent transfer function and 50,000 learning runs. The prediction accuracies for the ANN models were much better compared with those from the dimensionless correlations. The trained network was found to predict responses with a mean relative error of 2.9,3.9% for the Newtonian fluids and 4.7,5.9% for the non-Newtonian fluids, which were 27,62% lower than those associated with the dimensionless correlations. Algebraic solutions were included, which could be used to predict the heat transfer coefficients without requiring an ANN. PRACTICAL APPLICATIONS The artificial neural network (ANN) model is a network of computational elements that was originally developed to mimic the function of the human brain. ANN models do not require the prior knowledge of the relationship between the input and output variables because they can discover the relationship through successive training. Moreover, ANN models can predict several output variables at the same time, which is difficult in general regression methods. ANN concepts have been successfully used in food processing for prediction, quality control and pattern recognition. ANN models have been used in recent years for heat transfer modeling as a potential alternative to conventional dimensionless correlation approach and shown to be even better performers. In this study, ANN models were successfully developed for the heat transfer parameters associated with canned particulate high viscous Newtonian and non-Newtonian fluids during an end-over-end rotation thermal processing. Optimized configuration parameters were obtained by choosing appropriate combinations of learning rule, transfer function, learning runs, hidden layers and number of neurons. The trained network was found to predict parameter responses with mean relative errors considerably lower than from dimensionless correlations. [source] Fountain flow revisited: The effect of various fluid mechanics parametersAICHE JOURNAL, Issue 5 2010Evan Mitsoulis Abstract Numerical simulations have been undertaken for the benchmark problem of fountain flow present in injection-mold filling. The finite element method (FEM) is used to provide numerical results for both cases of planar and axisymmetric domains under laminar, isothermal, steady-state conditions for Newtonian fluids. The effects of inertia, gravity, surface tension, compressibility, slip at the wall, and pressure dependence of the viscosity are all considered individually in parametric studies covering a wide range of the relevant parameters. These results extend previous ones regarding the shape of the front, and in particular the centerline front position, as a function of the dimensionless parameters. The pressures from the simulations have been used to compute the excess pressure losses in the system (front pressure correction or exit correction). Inertia leads to highly extended front positions relative to the inertialess Newtonian values, which are 0.895 for the planar case and 0.835 for the axisymmetric one. Gravity acting in the direction of flow shows the same effect, while gravity opposing the flow gives a reduced bulge of the fountain. Surface tension, slip at the wall, and compressibility, all decrease the shape of the front. Pressure-dependence of the viscosity leads to increased front position as a corresponding dimensionless parameter goes from zero (no effect) to higher values of the pressure-shift factor. The exit correction increases monotonically with inertia, compressibility, and gravity, while it decreases monotonically with slip and pressure-dependence of the viscosity. Contour plots of the primary variables (velocity-pressure) show interesting trends compared with the base case (zero values of the dimensionless parameters and of surface tension). © 2009 American Institute of Chemical Engineers AIChE J, 2010 [source] A COMPARATIVE STUDY OF THE PERFORMANCE OF SELECTED IN-LINE VISCOMETERS ON NEWTONIAN AND SHEAR-THINNING FLUIDS,JOURNAL OF TEXTURE STUDIES, Issue 2 2001LAURA A. ZIMMER Three commercial instruments for in-line process measurement of fluid viscosity (an oscillating sphere viscometer, a tube viscometer and a coaxial cylinder viscometer) were evaluated using a Newtonian (60% sucrose) and two shear-thinning fluids (0.5% xanthan gum and 2% hydroxypropyl methylcellu-lose). The oscillating sphere viscometer required little or no calibration to measure the viscosity of Newtonian fluids. Otherwise, when compared to results given by analytical off-line rheometry, the in-line viscometers were found to be grossly inaccurate in predicting viscosity. A methodology is presented to correct the flow curves generated by each in-line instrument such that the output measurements are consistent with that given by off-line rheometry. Additional characteristics of each instrument that should be considered when choosing an instrument for in-line process application are presented. [source] An analytical model for steady coextrusion of viscoplastic fluids in thin slit dies with wall slipPOLYMER ENGINEERING & SCIENCE, Issue 4 2010Dilhan M. Kalyon Coextrusion is widely used to fabricate multilayered products with each layer providing a separate functionality, including barrier resistance to gases, strength, and printability. Here an analytical model of the coextrusion die flow of two incompressible, viscoplastic fluids in a slit die, subject to nonlinear wall slip and under fully developed and isothermal conditions, is developed to allow the prediction of the steady-state velocity and shear stress distributions and the flow rate versus pressure gradient relationship. The resulting model is applied to the coextrusion of two layers of viscoplastic fluids in a thin rectangular slit die (slit gap, h , slit width, W). The analytical solution recognizes a number of distinct flow conditions (eleven cases) that need to be treated separately. The solutions for all eleven cases are provided along with an apriori identification methodology for the determination of the applicable case, given the shear viscosity and wall slip parameters of the two viscoplastic fluids, the slit geometry and the flow conditions. Simplifications of the model would provide the solutions for the fully developed and isothermal coextrusion flows of any combination of Hershel-Bulkley, Bingham, power-law and Newtonian fluids with or without wall slip at one or both walls of the slit die. POLYM. ENG. SCI., 2010. © 2009 Society of Plastics Engineers [source] Coupling 3D and 1D fluid-structure interaction models for blood flow simulationsPROCEEDINGS IN APPLIED MATHEMATICS & MECHANICS, Issue 1 2006L. Formaggia Three-dimensional (3D) simulations of blood flow in medium to large vessels are now a common practice. These models consist of the 3D Navier-Stokes equations for incompressible Newtonian fluids coupled with a model for the vessel wall structure. However, it is still computationally unaffordable to simulate very large sections, let alone the whole, of the human circulatory system with fully 3D fluid-structure interaction models. Thus truncated 3D regions have to be considered. Reduced models, one-dimensional (1D) or zero-dimensional (0D), can be used to approximate the remaining parts of the cardiovascular system at a low computational cost. These models have a lower level of accuracy, since they describe the evolution of averaged quantities, nevertheless they provide useful information which can be fed to the more complex model. More precisely, the 1D models describe the wave propagation nature of blood flow and coupled with the 3D models can act also as absorbing boundary conditions. We consider in this work the coupling of a 3D fluid-structure interaction model with a 1D hyperbolic model. We study the stability of the coupling and present some numerical results. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Enhanced mixing of Newtonian fluids in a stirred vessel using impeller speed modulationTHE CANADIAN JOURNAL OF CHEMICAL ENGINEERING, Issue 6 2009Wei M. Yek Abstract This paper reports on an experimental study of mixing intensification using speed modulation of a six-blade Rushton turbine in a stirred vessel. Mixing times were measured using a non-intrusive technique based on direct visualisation of an acid-base reaction in a Newtonian fluid. The impeller speed modulation was achieved by using two waveforms: a square wave and a sine wave. The amplitude was fixed between a maximum Reynolds number of Remax,=,60 and minimum Reynolds numbers of Remin,=,40 or 30. The wave periods were varied (10, 20, or 40,s) in order to compare the effects of unsteady stirring on mixing performance. It was observed that a square wave protocol with the shortest wave period and the larger amplitude resulted in the shortest time to destroy the observed isolated mixing regions (IMRs), which are known to exist in stirred vessels operating at low Reynolds number. However, the sine wave protocol led to a slow diffusive mechanism in which IMR structures reached an asymptotic volume and remained visible even after several hours. The results are presented and discussed using digital photographs taken at different time intervals during experimentation. Ce papier présente une étude experimentale concernant l'intensification du mélange en modulant la vitesse d'une turbine de type Rushton a six palettes dans une cuve agitée. Les temps de mélanges sont mesurés avec une technique non-intrusive basée sur la visualisation directe d'une réaction acide-base au sein d'un fluide Newtonien. La modulation de la vitesse de la turbine a été realisée en utilisant deux formes d'ondes: une onde carrée et une onde sinusoidale. L'amplitude de chaque onde a été fixée entre un nombre de Reynolds maximal de Remax,=,60 et un nombre de Reynolds minimal de Remin,=,40 ou 30. Les périodes des ondes étaient variées (10, 20 ou 40,s) dans le but de comparer les effets du mélange non-stationnaire sur les performances du systeme. Il a été observé que le protocole suivant l'onde carrée avec la periode la plus courte et l'amplitude la plus large produisait le temps le plus court necessaire pour la destruction des zones de mélanges isolées (IMRs), dont l'éxistense est connue dans les cuves a mélange opérant aux nombres de Reynolds bas. Toutefois, le protocol suivant une onde sinusoidale a conduit a un mechanisme de diffusion lent dans lequel les IMRs atteignies un volume symptotique et sont restées visibles après plusieurs heures. Les résultats sont présentés and discutés en utilisant des photographes digitales prises à des intervales de temps differents durant les éxperiences. [source] Centrifugal pump performance calculation for homogeneous suspensionsTHE CANADIAN JOURNAL OF CHEMICAL ENGINEERING, Issue 4 2009L. J. W. Graham Abstract Centrifugal pumps are widely used for transporting suspensions, but their head performance is derated when non-Newtonian fluids and/or coarse solids are present. Some head deration methods are available for high viscosity Newtonian fluids, Bingham plastic fluids and for coarse solids in water. This paper presents a modification of the Hydraulic Institute head deration method that is suitable for any homogeneous non-Newtonian rheology. A modification of the Walker and Goulas method is also considered. Possible anomalous behaviour of kaolin slurries in centrifugal pumps is discussed. On utilise couramment des pompes centrifuges pour le transport de suspensions, mais le rendement de leur hauteur de charge est réduit en présence de fluides non newtoniens et/ou de solides grossiers. Certaines méthodes de réduction de la hauteur de charge sont disponibles pour les fluides newtoniens à viscosité élevée, les fluides plastiques de Bingham et les solides grossiers que l'on retrouve dans l'eau. Cet article présente une modification de la méthode de réduction de la hauteur de charge de l'Hydraulic Institute qui convient à n'importe quelle rhéologie non newtonienne homogène. Une modification de la méthode de Walker et Goulas est également envisagée. L'article traite également du comportement anomal possible des bouillies de kaolin dans les pompes centrifuges. [source] Effect of the geometry on the performance of the MaxblendÔ impeller with viscous Newtonian fluidsASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, Issue 5 2009Yoann Guntzburger Abstract Experimental and numerical investigations have been carried out to assess the effect of the vessel geometry (number of baffles) and the shape of the Maxblend impeller (configuration of the bottom paddle and angle of the upper grid) with viscous Newtonian fluids in the laminar and lower turbulent mixing regimes. Two parameters have been explored namely the power consumption of the impeller and the mixing time. Videos of the discoloration process have also been taken to get access to the mixing patterns. A nominal 50-l vessel has been used in the experiments. The number of baffles has been varied from 1 to 4, and the bottom paddle has been modified by making openings to allow flow passage. Finally, the effect of using a straight grid in the upper part of the Maxblend has been studied under the same conditions. It is shown that the number of baffles does not have a significant effect on the power consumption, the mixing evolution, and the mixing time regardless of the flow regime. Making openings in the bottom paddle allows for the destruction of the segregated zones at the bottom of the tank at the expense of a very slight increase in power consumption and mixing time. Finally, the power and mixing time are both increased with a straight grid Maxblend. Copyright © 2009 Curtin University of Technology and John Wiley & Sons, Ltd. [source] Rheological characterization of schizophyllan aqueous solutions after denaturation,renaturation treatmentBIOPOLYMERS, Issue 4 2004Yapeng Fang Abstract Schizophyllan (SPG) with a molecular weight of 2.6×106, designated SPG-1, is denatured and then renatured at a concentration of 1.8 wt % by alkalization,neutralization. The prepared denatured,renatured samples (DRSPG-1) are diluted to various concentrations and equilibrated for 10 days before rheological and intrinsic viscosity measurements. When concentration (Cp) is above 0.75 wt %, DRSPG-1 aqueous systems have weak gel-type rheological properties. However, for 0.28 wt % , Cp , 0.65 wt % and Cp , 0.19 wt %, DRSPG-1 aqueous systems behave as power law fluids and Newtonian fluids, respectively, which are attributed to the moderate isotropy degree of DRSPG-1 chains. Furthermore, a critical overlap parameter of c*[,] = 1.2 is determined for DRSPG-1 in aqueous solutions, which is close to that of 1 for intact SPG in water while far smaller than that of 4.3 for SPG in DMSO. This is considered to be due to the strong interactions of DRSPG-1 chains in water, further confirmed by the intrinsic viscosity measurements in which the DRSPG-1 aqueous solution shows an abnormally large value of Huggins constant. Regarding the structure of DRSPG-1 weak gels, multiruns of dynamic strain sweep measurements suggest that the dominant structures are aggregates formed by hydrogen-bonding associations of DRSPG-1 chains rather than the permanent three-dimensional network. In addition, the step-shear rate tests are performed to study the thixotropic properties of DRSPG-1 aqueous systems. © 2004 Wiley Periodicals, Inc. Biopolymers, 2004 [source] Viscous flow in three-dimensional reconstructed porous mediaINTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 8 2003Marco Pilotti Abstract In a recent paper Masad et al. (Int. J. Numer. Methods Eng. 2000; 26: 53,74) have shown the possibility of numerically studying fluid flow within two-dimensional microscopic images of granular materials. In this paper we investigate the possibility of computing the flow field at the pore scale within numerically reconstructed three dimensional porous media, by coupling a physically based sedimentation algorithm for porous media generation and a Lattice Boltzmann Technique for solving Navier equations for the monophasic flow of a newtonian fluid inside the intergranular space. Since the adopted sedimentation algorithm can produce porous media with a controlled level of complexity, we believe that this type of approach provides an ideal numerical laboratory to probe the effect of void space topology and geometry on the flow field. This should allow to understand the fluid-dynamic implications of processes such as compaction and cementation. After showing that the Lattice Boltzmann Technique is effective in solving Navier equations in porous media also at moderately high Reynolds, where Darcy's flow does not strictly hold anymore, we investigate the distribution of velocity components within porous media of growing complexity, starting from two different periodic arrangements of spheres up to a mixture of log-normally distributed spheres. We observe that the distribution of velocity components is conditioned by the medium complexity and tends to an exponential pattern. Copyright © 2003 John Wiley & Sons, Ltd. [source] |