Newborn Piglets (newborn + piglet)

Distribution by Scientific Domains


Selected Abstracts


Attenuated endothelin-1 mRNA expression with endothelin-1 receptor blockade during hypoxaemia and reoxygenation in newborn piglets

ACTA PAEDIATRICA, Issue 6 2000
S Medbø
We investigated the cause of decreased plasma endothelin-1 (ET-1) during hypoxaemia and reoxygenation in newborn piglets subjected to simultaneous blocking of the ET-1 receptors. Changes in plasma ET-1 and prepro-ET-1 mRNA expression in the main pulmonary artery and the left lower lobe in the lung were studied in 1-2-d-old piglets. Ten minutes prior to hypoxaemia, the hypoxaemia group (n = 10) was given saline, two groups (both n = 9) were given 1 and 5 mg/kg i.v. SB 217242 (an ET-1 receptor antagonist). Two groups served as normoxic controls, with and without SB 217242 5 mg/kg i.v. Hypoxaemia was induced by ventilating with 8% O2 until base excess was 20mmol/l or mean arterial blood pressure was < 20mmHg. Reoxygenation was performed for 2h with room air. During hypoxaemia, plasma ET-1 decreased in the hypoxaemia group, remained unchanged in the 1-mg group and increased in the 5-mg group. At the end of reoxygenation, plasma ET-1 was above baseline in the 1-mg and 5-mg groups. In the pulmonary artery, the hypoxaemia group showed 2- to 5-fold higher prepro-ET-1 mRNA expression compared to all the other groups (p < 0.05). There were trends for higher prepro-ET-1 mRNA expression in pulmonary tissue in the hypoxaemia group compared to the two receptor-blocking groups (p < 0.07). Conclusions: We conclude that hypoxaemia and reoxygenation increase prepro-ET-1 mRNA expression in the pulmonary artery in newborn piglets. These observations suggest that the half-life of ET-1 is decreased during hypoxaemia and reoxygenation in newborn piglets. [source]


Intrauterine growth restriction reduces nephron number and renal excretory function in newborn piglets,

ACTA PHYSIOLOGICA, Issue 2 2002
R. Bauer
ABSTRACT To examine the effects of intrauterine growth restriction on nephron number, renal circulation, and renal excretory functions in newborns, studies were conducted on 1-day-old anaesthetized piglets, divided into normal weight (n = 6) and intrauterine growth restricted (n = 6) piglets. Renal blood flow was measured by coloured microspheres, glomerular filtration rate was measured by inulin clearance, and osmotic clearance and fractional sodium excretion were calculated. In addition, an estimation of the nephron number was performed by counting representative glomerular numbers in microscopic sections. Newborn intrauterine growth restricted piglets exhibited a reduced glomerular filtration rate and osmotic clearance (P < 0.05), whereas renal blood flow and the filtration fraction as well as fractional sodium excretion were similar in normal weight and intrauterine growth restricted piglets. The nephron number was markedly reduced in intrauterine growth restricted piglets even if the nephron number was related to body weight (P < 0.01). There was a positive correlation between nephron number and glomerular filtration rate (r = 0.69, P < 0.05). Reduced glomerular filtration rate of newborn intrauterine growth restricted piglets is associated with a reduced nephron number. Thus, at birth, compensatory response of renal function due to nephron deficit does not exist in intrauterine growth restricted piglets. [source]


Up-regulation of heat shock protein HSP 20 in the hippocampus as an early response to hypoxia of the newborn

JOURNAL OF NEUROCHEMISTRY, Issue 2 2006
Jean-Claude David
Abstract Hypoxia is an important challenge for newborn mammals. Stress generated at the brain level under low oxygenation conditions results in up-regulation of heat shock proteins (HSPs) and other stress proteins. The aim of the present work was to determine the effect of hypoxia in the newborn on some newly described small molecular weight HSPs (HSP 20 and B8) in the hippocampus, cortex and cerebellum of newborn piglets. These effects will be compared with those of other closely related proteins such as ,B crystallin, HSP 27, heme oxygenase (HO)-1, HO-2, cyclooxygenase (COX)-1 and COX-2. The piglets were submitted to hypoxia (5% O2; 95% N2) over either 1 or 4 h, with recovery periods ranging from 0 to 68 h. Western blot analysis showed that HSP 20 was rapidly induced only in the hippocampus, long before hypoxia-inducible transcription factor HIF-1,, while HSP 27 was rapidly induced in the cortex and cerebellum. Vascular epithelial growth factor was increased simultaneously in the three regions. Moreover, an increase in the expression of, respectively, HO-1 and COX-2 was observed later, but at the same time, in the three regions tested. It appears that HSP 20 can be an early marker of hypoxia in the hippocampus. The other small HSPs or stress proteins display different temporal patterns of up-regulation (HSP 27 and HO-1, COX-2) or do not show changes in their expressions (,B crystallin, HSP B8, HO-2 and COX-1). [source]


Placental transfer and pharmacokinetics of allopurinol in late pregnant sows and their fetuses

JOURNAL OF VETERINARY PHARMACOLOGY & THERAPEUTICS, Issue 6 2008
A. J. VAN DIJK
Xanthine oxidoreductase (XOR) is a key enzyme in the evolvement of reperfusion injury resulting from birth asphyxia, a common cause of decreased viability and perinatal mortality in newborn piglets under farm conditions. At present no standard pharmacological intervention strategy is available to reduce these adverse effects of birth asphyxia. In the present study we aimed to evaluate placental transfer of allopurinol, an inhibitor of XOR. For this purpose, fetal catheterization of the jugular vein was conducted in five late pregnant sows (one fetus per sow). At 24,48 h after surgery, sows received allopurinol (15 mg/kg body weight; i.v.) and pharmacokinetics of allopurinol and its active metabolite oxypurinol were measured in both late pregnant sows and fetuses. Maternal and fetal blood samples were collected during and after allopurinol administration. Maternal Cmax values averaged 41.90 ,g/mL (allopurinol) and 3.68 ,g/mL (oxypurinol). Allopurinol crossed the placental barrier as shown by the average fetal Cmax values of 5.05 ,g/mL at 1.47 h after allopurinol administration to the sow. In only one fetus low plasma oxypurinol concentrations were found. Incubations of subcellular hepatic fractions of sows and 24-h-old piglets confirmed that allopurinol could be metabolized into oxypurinol. In conclusion, we demonstrated that allopurinol can cross the placental barrier, a prerequisite for further studies evaluating the use of allopurinol as a neuroprotective agent to reduce the adverse effects following birth asphyxia in neonatal piglets. [source]


Contribution of pulmonary surfactant with inhaled nitric oxide for treatment of pulmonary hypertension

PEDIATRICS INTERNATIONAL, Issue 5 2006
SATOSHI KUSUDA
Abstract Background: Combined therapy of inhaled nitric oxide (iNO) with pulmonary surfactant replacement was reported to improve oxygenation in patients or animal models of persistent pulmonary hypertension of the newborn with pulmonary surfactant deficiency lung. To evaluate the potential of iNO for the treatment of persistent pulmonary hypertension of the newborn, pulmonary arterial pressure (PAP) was measured during iNO before and after pulmonary surfactant replacement in an animal model of pulmonary hypertension with surfactant deficiency. Methods: Seven newborn piglets were injected with L-nitro-arginine-methylester to produce an animal model of pulmonary hypertension. After PAP increased, iNO (30 p.p.m.) was introduced. Then iNO was stopped, and animals were subjected to lung lavage with saline. After recording the effect of iNO, all animals then received exogenous pulmonary surfactant installation. After surfactant treatment, iNO was again introduced. Results: Pulmonary arterial pressure and systemic arterial pressure were increased significantly by >30% after infusion of L-nitro-arginine-methylester. During iNO only PAP was reduced significantly. Respiratory system compliance decreased significantly after lung lavage, and increased significantly after pulmonary surfactant replacement with concomitant increase of PaO2. In contrast, significant reduction of PAP with iNO before and after pulmonary surfactant replacement were also observed. The reduction ratios of PAP under each condition were 75.2 ± 7.4%, 81.3 ± 3.1%, and 79.1 ± 5.3%, respectively (not significant among conditions). Conclusion: These results suggest that iNO is still a potent pulmonary arterial vasodilator even under pulmonary surfactant deficiency in an animal model of pulmonary hypertension. [source]