Home About us Contact | |||
Newborn Neurons (newborn + neuron)
Selected AbstractsRelationship between delta-like and proneural bHLH genes during chick retinal developmentDEVELOPMENTAL DYNAMICS, Issue 6 2008Branden R. Nelson Abstract Notch signaling in the retina maintains a pool of progenitor cells throughout retinogenesis. However, two Notch-ligands from the Delta-like gene family, Dll1 and Dll4, are present in the developing retina. To understand their relationship, we characterized Dll1 and Dll4 expression with respect to proliferating progenitor cells and newborn neurons in the chick retina. Dll4 matched the pattern of neural differentiation. By contrast, Dll1 was primarily expressed in progenitor cells. We compared Dll1 and Dll4 kinetic profiles with that of the transiently up-regulated cascade of proneural basic helix,loop,helix (bHLH) genes after synchronized progenitor cell differentiation, which suggested a potential role for Ascl1 in the regulation of Delta-like genes. Gain-of-function assays demonstrate that Ascl1 does influence Delta-like gene expression and Notch signaling activity. These data suggest that multiple sources of Notch signaling from newborn neurons and progenitors themselves coordinate retinal histogenesis. Developmental Dynamics 237:1565,1580, 2008. © 2008 Wiley-Liss, Inc. [source] Lesion-induced neurogenesis in the hypothalamus is involved in behavioral recovery in adult ring dovesDEVELOPMENTAL NEUROBIOLOGY, Issue 6 2006Gang Chen Abstract Although neurogenesis in the brain of adult vertebrates is region dependent, lesion induces generation of new neurons in non-neurogenic brain regions. These findings raise the question of the role of new neurons in brain repair and functional recovery. We addressed this question by applying previous observations that electrolytic lesion induced neurogenesis in the ventromedial nucleus (VMN) of the hypothalamus in adult ring doves. Such lesions disrupted the male's courtship behavior, which could be reinstated after rehabilitation with a female. We investigated whether lesion-induced newborn neurons in the VMN facilitate the recovery of courtship behavior in the lesioned birds. We conducted systematic observations of cytological, morphological, and neuroanatomical changes in the lesioned VMN, and concurrently we monitored behavioral changes. Using a multitude of specific cell markers, we found a well-circumscribed cellular zone that proliferated actively. This highly proliferative zone initially appeared along the periphery of the lesion site, where cells had high levels of expression of neuronal, glial, and neurovascular markers. As newborn neurons matured at the lesion site, the necrosis gradually decreased, whereas a downsized proliferative zone relocated to a region ventral to the VMN. Some of the mature neurons were found to project to the midbrain vocal nuclei. Restoration of these projection neurons coincided with the recovery of courtship vocalization. Finally, we found that a social factor, that is, when the male doves were cohoused with a mate, facilitated neurogenesis and behavioral recovery. These results suggest that lesion-induced neurogenesis contributes to behavioral recovery in adult animals. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006 [source] Doublecortin as a marker of adult neuroplasticity in the canary song control nucleus HVCEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 4 2008Jacques Balthazart Abstract It is established that in songbirds the size of several brain song control nuclei varies seasonally, based on changes in cell size, dendritic branching and, in nucleus HVC, the incorporation of newborn neurons. In the developing and adult mammalian brain, the protein doublecortin (DCX) is expressed in postmitotic neurons and, as a part of the microtubule machinery, required for neuronal migration. We recently showed that in adult canaries, DCX-immunoreactive (ir) cells are present throughout the telencephalon, but the link between DCX and the active neurogenesis observed in songbirds remained uncertain. We demonstrate here that DCX labels recently born cells in the canary telencephalon and that, in parallel with changes in HVC volume, the number of DCX-ir cells is increased specifically in the HVC of testosterone-treated males compared with castrates, and in castrated testosterone-treated males paired with a female as compared with males paired with another male. The numbers of elongated DCX-ir cells (presumptive migrating neurons) and round multipolar DCX-ir cells (differentiating neurons) were also affected by the sex of the subjects and their photoperiodic condition (photosensitive vs photostimulated vs photorefractory). Thus, in canaries the endocrine state, as well as the social or photoperiodic condition independently of variation in steroid hormone action, affects the number of cells expressing a protein involved in neuronal migration specifically in brain areas that incorporate new neurons in the telencephalon. The DCX gene may be one of the targets by which testosterone and social stimuli induce seasonal changes in the volume of song nuclei. [source] Role of the cholinergic system in regulating survival of newborn neurons in the adult mouse dentate gyrus and olfactory bulbGENES TO CELLS, Issue 10 2006Naoko Kaneko Neurogenesis in the subgranular zone of the hippocampal dentate gyrus and olfactory bulbs continues into adulthood and has been implicated in the cognitive function of the adult brain. The basal forebrain cholinergic system has been suggested to play a role in regulating neurogenesis as well as learning and memory in these regions. Herein, we report that highly polysialylated neural cell adhesion molecule (PSA-NCAM)-positive immature cells as well as neuronal nuclei (NeuN)-positive mature neurons in the dentate gyrus and olfactory bulb express multiple acetylcholine receptor subunits and make contact with cholinergic fibers. To examine the function of acetylcholine in neurogenesis, we used donepezil (Aricept), a potent and selective acetylcholinesterase inhibitor that improves cognitive impairment in Alzheimer's disease. Intraperitoneal administrations of donepezil significantly enhanced the survival of newborn neurons, but not proliferation of neural progenitor cells in the subgranular zone or the subventricular zone of normal mice. Moreover, donepezil treatment reversed the chronic stress-induced decrease in neurogenesis. Taken together, these results suggest that activation of the cholinergic system promotes survival of newborn neurons in the adult dentate gyrus and olfactory bulb under both normal and stressed conditions. [source] Enhanced hippocampal neurogenesis in the absence of microglia T cell interaction and microglia activation in the murine running wheel modelGLIA, Issue 10 2009Marta Olah Abstract Recently, activated microglia have been shown to be involved in the regulation of several aspects of neurogenesis under certain experimental conditions both in vitro and in vivo. A neurogenesis supportive microglia phenotype has been suggested to arise from the interaction of microglia with homing encephalitogenic T cells. However, a unified hypothesis regarding the exact nature of microglia activity that is supportive of neurogenesis is yet missing from the field. Our aim was to investigate the connection between microglia activity and adult hippocampal neurogenesis under physiological conditions. To address this question we compared the level of microglia activation in the hippocampus of mice, which had access to a running wheel for 10 days and that of sedentary controls. Suprisingly, despite elevated levels of proliferation of neural precursors and survival of newborn neurons in the dentate gyrus microglia remained in a "resting" state morphologically, antigenically, and at the transcriptional level. Moreover, neither T cells nor MHCII expressing microglia were present in the hippocampal brain parenchyma. Though microglia in the dentate gyrus of the runners proliferated at a higher level than in the sedentary controls, this difference was also present in non-neurogenic sites. Therefore, our findings suggest that classical signs of microglia activation and microglia activation arising from interaction with T cells in particular are not a prerequisite for the activity-induced increase in adult hippocampal neurogenesis in C57Bl/6 mice. Thus, our results draw attention on the species and model differences that might exist regarding the regulation of adult hippocampal neurogenesis. © 2008 Wiley-Liss, Inc. [source] Functional maturation of adult-generated granule cellsHIPPOCAMPUS, Issue 3 2006Linda S. Overstreet-Wadiche Abstract The excitability and connectivity of adult-generated granule cells dictate to what extent newborn neurons participate in the hippocampal network. These functional parameters evolve as newborn cells mature and interact with the existing circuit. The progression of granule cell maturation during neonatal development appears to be reiterated in the adult, but with some caveats. New approaches to identify and track newborn neurons are revealing the timing of this process, as well as its sensitivity to activity-dependent regulation. © 2006 Wiley-Liss, Inc. [source] Dopaminergic neurons intrinsic to the striatumJOURNAL OF NEUROCHEMISTRY, Issue 6 2007Philippe Huot Abstract The striatum , the largest integrative component of the basal ganglia , harbors a population of neurons that express the enzyme tyrosine hydroxylase (TH), a faithful marker of dopaminergic neurons. The dopaminergic nature of these neurons is further supported by the fact that they express the dopamine (DA) transporter (DAT) and the nuclear orphan receptor Nurr1, a transcription factor essential for the expression of the DA phenotype by midbrain neurons. The vast majority of these neurons are morphologically similar to the medium-sized aspiny striatal interneurons and they all express the enzyme GAD65. The striatal TH-positive neurons increase markedly in number in animal models of Parkinson's disease (PD), where striatal DA concentrations are low, but this increase is abolished by L-dopa treatment. Hence, local DA concentrations appear to regulate the numerical density of this ectopic neuronal population, a phenomenon that is more likely the result of a shift in the phenotype of preexistent striatal interneurons rather than the recruitment of newborn neurons that will develop a DA phenotype. Altogether, these findings suggest that striatal TH-positive neurons act as a local source of DA and, as such, are part of a compensatory mechanism that could be artificially enhanced to alleviate or delay PD symptoms. [source] Selective death of newborn neurons in hippocampal dentate gyrus following moderate experimental traumatic brain injuryJOURNAL OF NEUROSCIENCE RESEARCH, Issue 10 2008Xiang Gao Abstract Memory impairment is one of the most significant residual deficits following traumatic brain injury (TBI) and is among the most frequent complaints heard from patients and their relatives. It has been reported that the hippocampus is particularly vulnerable to TBI, which results in hippocampus-dependent cognitive impairment. There are different regions in the hippocampus, and each region is composed of different cell types, which might respond differently to TBI. However, regional and cell type-specific neuronal death following TBI is not well described. Here, we examined the distribution of degenerating neurons in the hippocampus of the mouse brain following controlled cortical impact (CCI) and found that the majority of degenerating neurons observed were in the dentate gyrus after moderate (0.5 mm cortical deformation) CCI-TBI. In contrast, there were only a few degenerating neurons observed in the hilus, and we did not observe any degenerating neurons in the CA3 or CA1 regions. Among those degenerating cells in the dentate gyrus, about 80% of them were found in the inner granular neuron layer. Analysis with cell type-specific markers showed that most of the degenerating neurons in the inner granular neuron layer are newborn immature neurons. Further quantitative analysis shows that the number of newborn immature neurons in the dentate gyrus is dramatically decreased in the ipsilateral hemisphere compared with the contralateral side. Collectively, our data demonstrate the selective death of newborn immature neurons in the hippocampal dentate gyrus following moderate injury with CCI in mice. This selective vulnerability of newborn immature dentate neurons may contribute to the persistent impairment of learning and memory post-TBI and provide an innovative target for neuroprotective treatment strategies. © 2008 Wiley-Liss, Inc. [source] Molecular and cellular mechanisms of neuroprotection by vascular endothelial growth factorJOURNAL OF NEUROSCIENCE RESEARCH, Issue 1-2 2005Feng-Yan Sun Abstract The present view of the neuroprotective functions and mechanisms of action of vascular endothelial growth factor (VEGF) is based on studies of neuronal ischemic/hypoxic models in vivo and in vitro. Endogenous neuronal VEGF increases in the ischemic brain and plays a neuroprotective role in the pathophysiologic processes that follow stroke. Exogenous VEGF, directly administered or overexpressed by gene delivery into rat brains, reduces ischemic brain infarct and decreases hypoxic neuronal death. The main neuroprotective mechanisms of VEGF include: (1) modulation of the phosphatidylinositol 3,-kinase (PI3K)/Akt/nuclear factor-,B signaling pathway, inhibition of caspase-3 activity, and reduction of ischemic neuronal apoptosis; (2) inhibition of outward delayed rectifier potassium channel currents and increase of ischemia-induced tyrosine phosphorylation of Kv1.2 potassium channel proteins via activation of the PI3K pathway; and (3) enhancement of proliferation and migration of neural progenitors in the subventricular zone and improvement of striatal neurogenesis and maturation of newborn neurons in adult rat brains after stroke. © 2004 Wiley-Liss, Inc. [source] |