Home About us Contact | |||
New Therapeutics (new + therapeutics)
Selected AbstractsAirway inflammation: chemokine-induced neutrophilia and the class,I phosphoinositide 3-kinasesEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 4 2005Matthew Abstract Class,I phosphoinositide 3-kinases (PI3K) are known to play a significant role in neutrophil chemotaxis. However, the relative contributions of different PI3K isoforms, and how these impact on lung inflammation, have not been addressed. In vitro studies using wild-type and PI3K, knockout neutrophils demonstrated the major role of the ,,isoform in chemotactic but not chemokinetic events. This was confirmed by a model of direct chemokine instillation into the airways in vivo. Within all studies, a low yet significant degree of neutrophil movement in the absence of PI3K, could be observed. No role for the ,,isoform was demonstrated both in vitro and in vivo using PI3K, kinase-dead knock-in mice. Moreover, further studies using the broad-spectrum PI3K inhibitors wortmannin or LY294002 showed no other class,I PI3K isoforms to be involved in these chemotactic processes. Here, we identify a contributory PI3K-independent mechanism of neutrophil movement, yet demonstrate PI3K, as the pivotal mediator through which the majority of neutrophils migrate into the lung in response to chemokines. These data resolve the complexities of chemokine-induced neutrophilia and PI3K signaling and define the ,,isoform as a promising target for new therapeutics to treat airway inflammatory diseases. [source] Emerging drugs: mechanism of action, mass spectrometry and doping control analysisJOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 4 2009Mario Thevis Abstract The number of compounds and doping methods in sports is in a state of constant flux. In addition to ,traditional' doping agents, such as anabolic androgenic steroids or erythropoietin, new therapeutics and emerging drugs have considerable potential for misuse in elite sport. Such compounds are commonly based on new chemical structures, and the mechanisms underlying their modes of action represent new therapeutic approaches arising from recent advances in medical research; therefore, sports drug testing procedures need to be continuously modified and complementary methods developed, preferably based on mass spectrometry, to enable comprehensive doping controls. This tutorial not only discusses emerging drugs that can be categorized as anabolic agents (selective androgen receptor modulators, SARMs), gene doping [hypoxia-inducible factor stabilizers, peroxisome-proliferator-activated receptor (PPAR),-agonists] and erythropoietin-mimetics (Hematide) but also compounds with potentially performance-enhancing properties that are not classified in the current list of the World Anti-Doping Agency. Compounds such as ryanodine-calstabin-complex modulators (benzothiazepines) are included, their mass spectrometric properties discussed, and current approaches in sports drug testing outlined. Copyright © 2009 John Wiley & Sons, Ltd. [source] Bioinformatics-based discovery and identification of new biologically active peptides for GPCR deorphanization,JOURNAL OF PEPTIDE SCIENCE, Issue 9 2007Jean Colette Abstract Owing to their involvement in many physiological and pathological processes, G-protein-coupled receptors (GPCRs) are interesting targets for drug development. Approximately, 100 endoGPCRs lack their natural ligands and remain orphan (oGPCRs). Consequently, oGPCR deorphanization appears a promising research field for the development of new therapeutics. On the basis of the knowledge of currently known GPCR/ligand couples, some oGPCRs may be targeted by peptides. However, to find new drugs for GPCRs, Genepep has developed a dedicated bioinformatics platform to screen transcriptomic databases for the prediction of new GPCR ligands. The peptide lists generated include specific data, such as chemical and physical properties, the occurrence of post-translational modifications (PTMs) and an annotation referring to the location and expression level of the related putative genes. This information system allows a selection through series of biological criteria of ,10 000 natural peptides including already known GPCR ligands and potential new candidates for GPCR deorphanization. The most promising peptides for functional assay screening and future development as therapeutic agents are under evaluation. Copyright © 2007 European Peptide Society and John Wiley & Sons, Ltd. [source] National Institute of Neurological Disorders and Stroke (NINDS): Advances in understanding and treating neuropathy, 24,25 October 2006; Bethesda, MarylandJOURNAL OF THE PERIPHERAL NERVOUS SYSTEM, Issue 1 2008Eva L. Feldman Abstract National Institute of Neurological Disorders and Stroke sponsored a meeting to explore the current status of basic and clinical research in peripheral neurobiology and clinical neuropathy. The goal of the workshop was to identify areas where additional research could lead to the development of new therapeutics in the next 5 years. Participants discussed the current understanding of disease mechanisms of axonal and demyelinating neuropathies, existing techniques in research, disease biomarkers, and assessment of neuropathy. Painful neuropathies were discussed at the basic scientific and clinical levels in relation to new insights into etiology and treatment. The meeting concluded with a discussion on therapeutic development in neuropathy and the need for a unified approach to multicenter trials. Short-term goals of the workshop were to form a working group for neuropathy, the Peripheral Neuropathy Study Group, and to translate new scientific findings into therapies and complete clinical trials. [source] Review: On TRAIL for malignant glioma therapy?NEUROPATHOLOGY & APPLIED NEUROBIOLOGY, Issue 3 2010J. M. A. Kuijlen J. M. A. Kuijlen, E. Bremer, J. J. A. Mooij, W. F. A. den Dunnen and W. Helfrich (2010) Neuropathology and Applied Neurobiology36, 168,182 On TRAIL for malignant glioma therapy? Glioblastoma (GBM) is a devastating cancer with a median survival of around 15 months. Significant advances in treatment have not been achieved yet, even with a host of new therapeutics under investigation. Therefore, the quest for a cure for GBM remains as intense as ever. Of particular interest for GBM therapy is the selective induction of apoptosis using the pro-apoptotic tumour necrosis factor-related apoptosis-inducing ligand (TRAIL). TRAIL signals apoptosis via its two agonistic receptors TRAIL-R1 and TRAIL-R2. TRAIL is normally present as homotrimeric transmembrane protein, but can also be processed into a soluble trimeric form (sTRAIL). Recombinant sTRAIL has strong tumouricidal activity towards GBM cells, with no or minimal toxicity towards normal human cells. Unfortunately, GBM is a very heterogeneous tumour, with multiple genetically aberrant clones within one tumour. Consequently, any single agent therapy is likely to be not effective enough. However, the anti-GBM activity of TRAIL can be synergistically enhanced by a variety of conventional and novel targeted therapies, making TRAIL an ideal candidate for combinatorial strategies. Here we will, after briefly detailing the biology of TRAIL/TRAIL receptor signalling, focus on the promises and pitfalls of recombinant TRAIL as a therapeutic agent alone and in combinatorial therapeutic approaches for GBM. [source] CD109 expression in squamous cell carcinoma of the uterine cervixPATHOLOGY INTERNATIONAL, Issue 4 2005Jing-min Zhang CD109 is a cell surface protein, a member of the ,2 macroglobulin/C3,C4,C5 family of thioester-containing proteins. The authors have recently reported that high expression of the CD109 gene was detected in approximately half of the examined lung and esophageal squamous cell carcinomas as well as in the testis, and that CD109 has the characteristics of a cancer,testis antigen. In the present study CD109 expression in cervical squamous cell carcinoma was compared with that in endometrial adenocarcinoma by reverse transcription polymerase chain reaction (RT-PCR). The result demonstrated that CD109 expression is significantly higher in cervical squamous cell carcinomas than in endometrial adenocarcinomas and normal cervix and endometrium. In contrast, when expression of RET finger protein (RFP) and bromodomain testis-specific (BRDT) genes, which are also known to be highly expressed in the testis, was examined, no significant difference in their expression levels was observed between squamous cell carcinomas and adenocarcinomas. These findings suggest that CD109 may become a molecular target for the development of new therapeutics for squamous cell carcinoma of various tissue origins. [source] Significance of Biodiversity to HealthBIOTROPICA, Issue 5 2010Christopher N. Herndon ABSTRACT The United Nations declared 2010 the International Year of Biodiversity. Despite the magnitude of the global crisis of biodiversity loss, its far-reaching consequences to human health remain largely unappreciated. The legacy of the natural world to medicine is profound and its potential to yield new therapeutics and advancements in biomedical science undervalued. The enormity of the global crisis underscores a fundamental truth, one that is seemingly obvious but has been tragically overlooked: Our species does not exist in isolation from the biosphere. Rather, our fate depends on it. [source] Stanniocalcin 2 overexpression in castration-resistant prostate cancer and aggressive prostate cancerCANCER SCIENCE, Issue 5 2009Kenji Tamura Prostate cancer is usually androgen-dependent and responds well to androgen ablation therapy based on castration. However, at a certain stage some prostate cancers eventually acquire a castration-resistant phenotype where they progress aggressively and show very poor response to any anticancer therapies. To characterize the molecular features of these clinical castration-resistant prostate cancers, we previously analyzed gene expression profiles by genome-wide cDNA microarrays combined with microdissection and found dozens of trans -activated genes in clinical castration-resistant prostate cancers. Among them, we report the identification of a new biomarker, stanniocalcin 2, as an overexpressed gene in castration-resistant prostate cancer cells. Real-time polymerase chain reaction and immunohistochemical analysis confirmed overexpression of stanniocalcin 2, a 302-amino-acid glycoprotein hormone, specifically in castration-resistant prostate cancer cells and aggressive castration-naïve prostate cancers with high Gleason scores (8,10). The gene was not expressed in normal prostate, nor in most indolent castration-naïve prostate cancers. Knockdown of stanniocalcin 2 expression by short interfering RNA in a prostate cancer cell line resulted in drastic attenuation of prostate cancer cell growth. Concordantly, stanniocalcin 2 overexpression in a prostate cancer cell line promoted prostate cancer cell growth, indicating its oncogenic property. These findings suggest that stanniocalcin 2 could be involved in aggressive phenotyping of prostate cancers, including castration-resistant prostate cancers, and that it should be a potential molecular target for development of new therapeutics and a diagnostic biomarker for aggressive prostate cancers. (Cancer Sci 2009; 100: 914,919) [source] Allergen dose dependency of the early- and late-phase cutaneous response in the cynomolgus monkeyCLINICAL & EXPERIMENTAL ALLERGY, Issue 7 2009A. Tomkinson Summary Background Cutaneous administration of allergen provides a means to confirm an allergic status, investigate the pathogenesis of allergic diseases, and/or provide a mechanism to evaluate the benefit of new potential therapeutics. Objective Studies were performed to characterize the allergen-induced cutaneous early- and late-phase response (EPR and LPR) in the cynomolgus monkey. Methods Following intradermal injections of Ascaris suum allergen, the cutaneous weal and flare EPR was measured 15 min post-injection, and skin biopsies were collected at 8,24 h to determine the optimal time of LPR occurrence. Biopsies were analysed for epidermal and dermal inflammatory changes. Results The EPR was dose related with a reproducible, measurable response at 1 : 10 000 and maximal at a 1 : 100 allergen dilution. In contrast, the threshold dose required for a reproducible LPR was much greater requiring a dilution of 6 : 100, suggesting independent mechanisms for the EPR and LPR. The LPR 20 h post-allergen injection induced an inflammatory response in the upper and deep dermis. The response was characterized by a moderate perivascular to diffuse inflammation consisting of mononuclear cells, neutrophils and eosinophils. Dexamethasone, while having no effect on the EPR, reduced dermal inflammation (upper dermis, P=0.004; deep dermis, P=0.03). Similarly, dermal eosinophilia was also reduced (upper dermis, P<0.001; deep dermis, P=0.02). Conclusion Collectively, the results indicate the dose dependency of the EPR and LPR. Furthermore, our observations indicate the value of the LPR response in the cynomolgus monkey to evaluate new therapeutics for the treatment of allergic diseases such as atopic dermatitis. [source] Function of Siglec-8 on human eosinophilsCLINICAL & EXPERIMENTAL ALLERGY REVIEWS, Issue 2004E. Nutku Summary Eosinophil recruitment and activation are regarded as central to the pathophysiology of allergic diseases, including asthma. An improved understanding of the mechanisms involved in these responses is therefore of great relevance to asthma pathogenesis and the development of new therapeutics. As part of ongoing efforts to discover novel eosinophil-specific molecules, we recently cloned Siglec-8 (formerly called sialoadhesin family member-2) from a human eosinophil cDNA library. Siglecs (sialic acid binding Ig-like lectins) are a family of transmembrane, I-type lectins characterized by an N-terminal V-set Ig domain that binds sialic acid. We now know that Siglec-8 is expressed only on human eosinophils, basophils and mast cells, giving it a unique expression pattern on effector cells of allergic disease. We have determined that in eosinophils, Siglec-8 exists in two isoforms, one of which contains two putative cytoplasmic tyrosine-based signalling motifs, including an ITIM (immunoreceptor tyrosine-based inhibitory motif) sequence. Because of the ITIM sequence, we hypothesized that Siglec-8 ligation would inhibit eosinophil functions. Initial studies found that incubation of eosinophils with Siglec-8 binding monoclonal antibodies under cross-linking conditions caused rapid and profound caspase-dependent apoptosis, and this response could not be rescued by the survival-promoting cytokine interleukin (IL)-5. In fact, IL-5 enhanced the ability of Siglec-8 cross-linking to induce eosinophil apoptosis. Activation via Siglec-8 could potentially be used to inhibit eosinophil survival in vivo, providing a novel strategy for reducing or inhibiting these cells in allergic and other diseases. [source] |