Home About us Contact | |||
New Territories (new + territory)
Selected AbstractsAnalytical Studies on the Impact of Land Reclamation on Ground Water FlowGROUND WATER, Issue 6 2001Jiu J. Jiao Land reclamation has been a common practice to produce valuable land in coastal areas. The impact of land reclamation on coastal environment and marine ecology is well recognized and widely studied. It has not been recognized yet that reclamation may change the regional ground water regime, which may in turn modify the coastal environment, flooding pattern, and stability of slopes and foundations. This paper represents the first attempt to examine quantitatively the effect of reclamation on ground water levels. Analytical solutions are developed to study the ground water change in response to reclamation based on two hypothetical models. In the first model, the ground water flow regime changes only in the hillside around the reclamation areas. In the second model, the ground water regime changes in the entire hill. Both models assume that the ground water flow is in a steady state and satisfies the Dupuit assumptions. Hypothetical examples are used to demonstrate how the ground water level, ground water divide and ground water submarine discharge will change with the scale and hydraulic conductivity of the reclamation materials. The results show that the change of ground water regime depends mainly on the length of the reclaimed area and the values of hydraulic conductivity of the reclaimed materials. It is also seen that the reclamation may impact not only the ground water regime near the coast areas around the reclamation site, but also that in the coast areas opposite the reclamation area. A reclamation site near Tseung Kwan O in the New Territories in Hong Kong, China, is used as a case study to discuss the possible modification of the ground water system caused by reclamation. [source] UnstructuringChinese Society: The Fictions of Colonial Practice and the Changing Realities of "Land" in the New Territories of Hong KongAMERICAN ETHNOLOGIST, Issue 2 2001Eve Darian-Smith UnstructuringChinese Society: The Fictions of Colonial Practice and the Changing Realities of "Land" in the New Territories of Hong Kong. Allen Chun. Amsterdam: Harwood Academic Publishers, 2000. xi. 348 pp., tables, map, bibliography, appendix, index. [source] The regulation of brood reduction in Booted Eagles Hieraaetus pennatus through habitat heterogeneityIBIS, Issue 4 2008EVA CASADO Brood reduction, the death of one or more chicks through siblicide or starvation, can occur through density-dependence in fecundity. Brood reduction may arise in territorial breeding systems either as a response to a high level of territorial interference in a situation of high density or as a result of habitat heterogeneity. To test the predictions of the two main hypotheses that attempt to explain how density-dependent fecundity is generated, the Habitat Heterogeneity Hypothesis (HHH) and the Individual Adjustment Hypothesis (IAH), we analysed the relationship between density and fecundity in an expanding population of Booted Eagles in Doņana National Park, Spain, using an 18-year data series. We also studied the occurrence and frequency of brood reduction in the same Booted Eagle population to appreciate further its effects and the factors that influence its occurrence and frequency. Our results support the HHH in the present situation of high density, as fecundity in the better territories (older and more frequently occupied) was higher than in low quality territories and was not affected by population density in high density periods. Nevertheless, the fecundity of high quality territories was affected (although not significantly) by population density in periods of low density, suggesting that the IAH was supported when only high quality territories were occupied. Older territories were used more frequently and chicks in these areas hatched earlier and suffered lower mortality than in new territories. We found a significant negative relationship between mean fecundity and its skewness, a finding that also supports HHH. During years of food shortage, less frequently occupied territories suffered higher rates of brood reduction. Brood reduction in this Booted Eagle population was a consequence of the heterogeneous structure of the habitat, with some territories having a higher probability of brood reduction than others. Parental nutritional condition did not affect brood reduction. The effect of brood reduction on nestling quality and population dynamics is also discussed. [source] Protein folding simulations: From coarse-grained model to all-atom modelIUBMB LIFE, Issue 6 2009Jian Zhang Abstract Protein folding is an important and challenging problem in molecular biology. During the last two decades, molecular dynamics (MD) simulation has proved to be a paramount tool and was widely used to study protein structures, folding kinetics and thermodynamics, and structure,stability,function relationship. It was also used to help engineering and designing new proteins, and to answer even more general questions such as the minimal number of amino acid or the evolution principle of protein families. Nowadays, the MD simulation is still undergoing rapid developments. The first trend is to toward developing new coarse-grained models and studying larger and more complex molecular systems such as protein,protein complex and their assembling process, amyloid related aggregations, and structure and motion of chaperons, motors, channels and virus capsides; the second trend is toward building high resolution models and explore more detailed and accurate pictures of protein folding and the associated processes, such as the coordination bond or disulfide bond involved folding, the polarization, charge transfer and protonate/deprotonate process involved in metal coupled folding, and the ion permeation and its coupling with the kinetics of channels. On these new territories, MD simulations have given many promising results and will continue to offer exciting views. Here, we review several new subjects investigated by using MD simulations as well as the corresponding developments of appropriate protein models. These include but are not limited to the attempt to go beyond the topology based G,-like model and characterize the energetic factors in protein structures and dynamics, the study of the thermodynamics and kinetics of disulfide bond involved protein folding, the modeling of the interactions between chaperonin and the encapsulated protein and the protein folding under this circumstance, the effort to clarify the important yet still elusive folding mechanism of protein BBL, the development of discrete MD and its application in studying the ,,, conformational conversion and oligomer assembling process, and the modeling of metal ion involved protein folding. Š 2009 IUBMB IUBMB Life, 61(6): 627,643, 2009 [source] Development of the cell covering in the dinoflagellate Scrippsiella hexapraecingula (Peridiniales, Dinophyceae)PHYCOLOGICAL RESEARCH, Issue 3 2001Satoko Sekida SUMMARY The organization and development of cell coverings in two alternate phases of the life cycle in a marine dinoflagellate, Scrippsiella hexapraecingula Horiguchi et Chihara, were investigated by thin sectioning and freeze-fracture electron microscopy. In one of these phases, the motile phase, cells have an outermost plasma membrane that is lined with flattened amphiesmal vesicles. Groups of microtubules lie beneath these vesicles. In mature motile cells, thecal plates are completely enclosed in individual amphiesmal vesicles. After settling, the cells enter the second, non-motile phase. Here, ecdysis occurs, resulting in several steps including formation of the first pellicle layer (PI), fusion of the inner amphiesmal vesicle membranes to form the new plasma membrane, deposition of the second pellicle layer (PM) under PI, and the appearance and fusion of juvenile amphiesmal vesicles to form new territories, which eventually give rise to new thecal plates in the next motile phase. Thus, the pattern in which thecal plates are arranged in motile cells is determined at the time when the amphiesmal vesicles develop into non-motile cells. [source] The Tree Canopy as BlueprintARCHITECTURAL DESIGN, Issue 3 2010Mitchell Schwarzer Abstract As the opportunities for new territories become more limited, the only way is up. Mitchell Schwarzer explores the dizzying heights of the ,last biotic frontier' of arboreal architecture with its high platforms, walkways and canopy craft. Challenging in construction and engineering terms, the tree canopy also requires engaging with a different atmospheric and climatic range to those conditions encountered at ground level. Copyright Š 2010 John Wiley & Sons, Ltd. [source] Applied communitarian ethics for harm reduction: promoting a dialogue within the fieldDRUG AND ALCOHOL REVIEW, Issue 5 2007CRAIG FRY BSc(Hons) Abstract This piece responds to critical points raised in commentaries on our 2005 HRD paper on the topic of harm reduction ethics, and clarifies other aspects of our original arguments that were misinterpreted. In our view, the goal of ethical engagement in harm reduction is not necessarily the production of an agreed moral framework, but instead reflection and awareness raising around the various values and beliefs underlying harm reduction, and consideration of how these influence policy, practice and research decisions and outcomes. This ,discursive authenticity' as Hathaway has called it, can help to define a new territory of authority for drug users as participants in harm reduction policy, practice and research. [source] Modelling hantavirus in fluctuating populations of bank voles: the role of indirect transmission on virus persistenceJOURNAL OF ANIMAL ECOLOGY, Issue 1 2003Frank Sauvage Summary 1Using field data published in the literature, we investigated pathogen dynamics and conditions of persistence in a mathematical model of the bank vole (Clethrionomys glareolus),Puumala hantavirus system. The host population is assumed to have a 3-year periodic cycle. The duration of very low host density is critical for virus transmission and survival. 2Field epidemiological data strongly suggested a transmission of the hantavirus by the contaminated environment. We thus studied whether this ,indirect' transmission affected the virus persistence in the host population. 3The model assumptions were derived from the following conditions found in the literature: (1) there is no additional mortality nor fecundity loss due to the virus in infected hosts, thus the cyclic demographical pattern is not due to the virus; (2) no remission has been observed, thus we did not consider the existence of recovered individuals; (3) adult females are territorial and juveniles disperse to find a new territory and reach sexual maturity. A fragmented landscape was assumed to occur: individuals can live in favourable or unfavourable patches. 4The model was a compartmental model; the population was structured into susceptible or infectious individuals. We considered two age classes, juveniles and adults, and two sites (populations) connected by juvenile dispersal. 5Model dynamics accurately predicted the cyclic trend in disease prevalence as observed in epidemiological studies. They also showed that indirect transmission significantly increased the probability for the virus to persist during the low-density period of the host population. More precisely, even a low survival rate of the virus outside the host was sufficient to decrease extinction risk of the infection by stochastic events. 6Elasticity analysis showed a high robustness of the model to changes in the parameters of indirect transmission but a high sensitivity to changes in adult density. [source] HOW DID LIFE BECOME SO DIVERSE?PALAEONTOLOGY, Issue 1 2007THE DYNAMICS OF DIVERSIFICATION ACCORDING TO THE FOSSIL RECORD AND MOLECULAR PHYLOGENETICS Abstract:, The long-term diversification of life probably cannot be modelled as a simple equilibrial process: the time scales are too long, the potential for exploring new ecospace is too large and it is unlikely that ecological controls can act at global scales. The sum of many clade expansions and reductions, each of which happens according to its own dynamic, probably approximates more a damped exponential curve when translated into a global-scale species diversification curve. Unfortunately, it is not possible to plot such a meaningful global-scale species diversification curve through time, but curves at higher taxonomic levels have been produced. These curves are subject to the vagaries of the fossil record, but it is unlikely that the sources of error entirely overwhelm the biological signal. Clades radiate when the external and internal conditions are right: a new territory or ecospace becomes available, and the lineage has acquired a number of characters that open up a new diet or mode of life. Modern high levels of diversity in certain speciose clades may depend on such ancient opportunities taken. Dramatic climatic changes through the Quaternary must have driven extinctions and originations, but many species responded simply by moving to more favourable locations. Ecological communities appear to be no more than merely chance associations of species, but there may be real interactions among species. Ironically, high species diversity may lead to more speciation, not, as had been assumed, less: more species create more opportunities and selective pressures for other species to respond to, rather than capping diversity at a fixed equilibrium level. Studies from the scale of modern ecosystems to global long-term patterns in the fossil record support a model for the exponential diversification of life, and one explanation for a pattern of exponential diversification is that as diversity increases, new forms become ever more refinements of existing forms. In a sense the world becomes increasingly divided into finer niche space. Organisms have a propensity to speciate freely, species richness within ecosystems appears to generate opportunities for more speciation, clades show all kinds of patterns from sluggish speciation rates and constant diversity through time to apparently explosive speciation, and there is no evidence that rapidly speciating clades have reached a limit, nor that they are driving other clades to extinction. A corollary of this view is that current biodiversity must be higher than it has ever been. Limits to infinite growth are clearly local, regional, and global turnover and extinction events, when climate change and physical catastrophes knock out species and whole clades, and push the rising exponential curve down a notch or two. [source] |