Home About us Contact | |||
New Surface (new + surface)
Selected AbstractsAutomatic Conversion of Mesh Animations into Skeleton-based AnimationsCOMPUTER GRAPHICS FORUM, Issue 2 2008Edilson De Aguiar Abstract Recently, it has become increasingly popular to represent animations not by means of a classical skeleton-based model, but in the form of deforming mesh sequences. The reason for this new trend is that novel mesh deformation methods as well as new surface based scene capture techniques offer a great level of flexibility during animation creation. Unfortunately, the resulting scene representation is less compact than skeletal ones and there is not yet a rich toolbox available which enables easy post-processing and modification of mesh animations. To bridge this gap between the mesh-based and the skeletal paradigm, we propose a new method that automatically extracts a plausible kinematic skeleton, skeletal motion parameters, as well as surface skinning weights from arbitrary mesh animations. By this means, deforming mesh sequences can be fully-automatically transformed into fullyrigged virtual subjects. The original input can then be quickly rendered based on the new compact bone and skin representation, and it can be easily modified using the full repertoire of already existing animation tools. [source] Vancomycin covalently bonded to titanium alloy prevents bacterial colonizationJOURNAL OF ORTHOPAEDIC RESEARCH, Issue 7 2007Valentin Antoci Jr. Abstract Periprosthetic infection is a devastating consequence of implant insertion and can arise from hematogenous sources or surgical contamination. Microbes can preferentially colonize the implant surface and, by forming a biofilm, escape immune surveillance. We hypothesized that if an antibiotic can be tethered to a titanium alloy (Ti) surface, it will inhibit bacterial colonization, prevent biofilm formation, and avert late-stage infection. To test this hypothesis, a Ti rod was covalently derivatized with vancomycin. Reaction efficiencies were evaluated by colorimetric and spectrophotometric measurements. The vancomycin-modified surface was stable in aqueous solutions over extended time periods and maintained antibiotic coverage, even after press-fit insertion into a cadaverous rat femora. When evaluated using fluorescently labeled bacteria, or by direct colony counts, the surface-bound antibiotic prevented bacterial colonization in vitro after: (1) exposure to high levels of S. aureus; (2) extended incubation in physiological buffers; and (3) repeated bacterial challenges. Importantly, whereas the vancomycin-derivitized pins prevented bacterial colonization, S. aureus adhered to control pins, even in the presence of concentrations of vancomycin that exceeded the strain MIC. These results demonstrate that we have effectively engineered a stable, bactericidal Ti surface. This new surface holds great promise in terms of mitigating or preventing periprosthetic infection. © 2007 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 25:858,866, 2007 [source] Exfoliation corrosion of 7150 Al alloy with various tempers and its electrochemical impedance spectroscopy in EXCO solutionMATERIALS AND CORROSION/WERKSTOFFE UND KORROSION, Issue 6 2009J. F. Li Abstract The exfoliation corrosion susceptibility and electrochemical impedance spectroscopy (EIS) of 7150 Al alloys with T6, T73, and RRA (retrogression at 175,°C for 3 h) tempers in EXCO solution were investigated. The anodic equilibrium precipitate ,(MgZn2) is continuous or closely spaced at the grain boundaries in the 7150-T6 Al alloy, resulting in its greatest susceptibility to exfoliation corrosion. The grain boundary , precipitates in the RRA and T73 treated 7150 Al alloys are coarsened and show a clear discontinuous nature; they possess similar exfoliation corrosion sensitivity and their exfoliation corrosion resistance is greatly increased. At the beginning of immersion in EXCO solution, the EIS plot of the 7150 Al alloys is composed of a capacitive arc in the high to medium frequency range and an inductive component in the medium to low frequency range. As immersion time is increased, exfoliation corrosion with different corrosion ratings occurs on the surface of the 7150 Al alloy with various tempers, two capacitive arcs appear in the high to medium and medium to low frequency ranges, respectively. The fitted medium to low frequency capacitance C2 of 7150-T6 Al alloy, corresponding to the new surface caused by the exfoliation corrosion, is much greater than that of the T73 and RRA treated 7150 Al alloy, which is consistent with the greatest exfoliation corrosion susceptibility of the 7150-T6 Al alloy. [source] Study of adhesion and surface properties of low-density poly(ethylene) pre-treated by cold discharge plasma,POLYMERS FOR ADVANCED TECHNOLOGIES, Issue 2 2007Igor Novák Abstract The low-density poly(ethylene), which is prone to hydrophilicity, dyeability, and bondability, was modified by surface barrier discharge and radio-frequency discharge plasma. A process of plasma modification was investigated to improve adhesion between poly(ethylene) and more polar polymers, to improve surface properties, and to form a new surface containing polar functional groups incoming to reactions with diazo-compounds, and/or vinyl silanes. The measurements of contact angles and peel strengths of adhesive joints were carried out for characterization of the surface and adhesive properties of the polymer modified by plasma. The topography of modified poly(ethylene) was studied using atomic force microscopy, and changes in chemical structure were analyzed with X-ray photoelectron spectroscopy. Copyright © 2006 John Wiley & Sons, Ltd. [source] Surface-entropy reduction approaches to manipulate crystal forms of ,-ketoacyl acyl carrier protein synthase II from Streptococcus pneumoniaeACTA CRYSTALLOGRAPHICA SECTION D, Issue 2 2008Gopalakrishnan Parthasarathy A series of experiments with ,-ketoacyl acyl carrier protein synthase II (FabF) from Streptococcus pneumonia (spFabF) were undertaken to evaluate the capability of surface-entropy reduction (SER) to manipulate protein crystallization. Previous work has shown that this protein crystallizes in two forms. The triclinic form contains four molecules in the asymmetric unit (a.u.) and diffracts to 2.1,Å resolution, while the more desirable primitive orthorhombic form contains one molecule in the a.u. and diffracts to 1.3,Å. The aim was to evaluate the effect of SER mutations that were specifically engineered to avoid perturbing the crystal-packing interfaces employed by the favorable primitive orthorhombic crystal form while potentially disrupting a surface of the protein employed by the less desirable triclinic crystal form. Two mutant proteins were engineered, each of which harbored five SER mutations. Extensive crystallization screening produced crystals of the two mutants, but only under conditions that differed from those used for the native protein. One of the mutant proteins yielded crystals that were of a new form (centered orthorhombic), despite the fact that the interfaces employed by the primitive orthorhombic form of the native protein were specifically unaltered. Structure determination at 1.75,Å resolution reveals that one of the mutations, E383A, appears to play a key role in disfavouring the less desirable triclinic crystal form and in generating a new surface for a packing interaction that stabilizes the new crystal form. [source] Dating young geomorphic surfaces using age of colonizing Douglas fir in southwestern Washington and northwestern Oregon, USA,EARTH SURFACE PROCESSES AND LANDFORMS, Issue 6 2007Thomas C. Pierson Abstract Dating of dynamic, young (<500 years) geomorphic landforms, particularly volcanofluvial features, requires higher precision than is possible with radiocarbon dating. Minimum ages of recently created landforms have long been obtained from tree-ring ages of the oldest trees growing on new surfaces. But to estimate the year of landform creation requires that two time corrections be added to tree ages obtained from increment cores: (1) the time interval between stabilization of the new landform surface and germination of the sampled trees (germination lag time or GLT); and (2) the interval between seedling germination and growth to sampling height, if the trees are not cored at ground level. The sum of these two time intervals is the colonization time gap (CTG). Such time corrections have been needed for more precise dating of terraces and floodplains in lowland river valleys in the Cascade Range, where significant eruption-induced lateral shifting and vertical aggradation of channels can occur over years to decades, and where timing of such geomorphic changes can be critical to emergency planning. Earliest colonizing Douglas fir (Pseudotsuga menziesii) were sampled for tree-ring dating at eight sites on lowland (<750 m a.s.l.), recently formed surfaces of known age near three Cascade volcanoes , Mount Rainier, Mount St. Helens and Mount Hood , in southwestern Washington and northwestern Oregon. Increment cores or stem sections were taken at breast height and, where possible, at ground level from the largest, oldest-looking trees at each study site. At least ten trees were sampled at each site unless the total of early colonizers was less. Results indicate that a correction of four years should be used for GLT and 10 years for CTG if the single largest (and presumed oldest) Douglas fir growing on a surface of unknown age is sampled. This approach would have a potential error of up to 20 years. Error can be reduced by sampling the five largest Douglas fir instead of the single largest. A GLT correction of 5 years should be added to the mean ring-count age of the five largest trees growing on the surface being dated, if the trees are cored at ground level. This correction would have an approximate error of ±5 years. If the trees are cored at about 1·4 m above the ground surface (breast height), a CTG correction of 11 years should be added to the mean age of the five sampled trees (with an error of about ±7 years). Published in 2006 by John Wiley & Sons, Ltd. [source] PE-CVD of Acid/Base Coatings from Acrylic Acid and Allylamine VapoursPLASMA PROCESSES AND POLYMERS, Issue S1 2007Eloisa Sardella Abstract Different plasma processes were investigated to obtain coatings characterized by N and O functional groups at their surface. From the literature, big efforts are evident devoted to designing new surfaces with chemical composition and chemical,physical properties tightly controlled. This paper demonstrates how it is possible to obtain coatings with acid and basic properties at different extent, by simply adjusting the acrylic acid/allylamine chemical composition of the gas feed in a plasma deposition process. The deposited films exhibit tuneable acid,base properties, very attractive to manufacture sensors, and biomaterials, and for applications in tissue engineering field. [source] |