New Numerical Technique (new + numerical_technique)

Distribution by Scientific Domains


Selected Abstracts


Parsimonious finite-volume frequency-domain method for 2-D P,SV -wave modelling

GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 2 2008
R. Brossier
SUMMARY A new numerical technique for solving 2-D elastodynamic equations based on a finite-volume frequency-domain approach is proposed. This method has been developed as a tool to perform 2-D elastic frequency-domain full-waveform inversion. In this context, the system of linear equations that results from the discretization of the elastodynamic equations is solved with a direct solver, allowing efficient multiple-source simulations at the partial expense of the memory requirement. The discretization of the finite-volume approach is through triangles. Only fluxes with the required quantities are shared between the cells, relaxing the meshing conditions, as compared to finite-element methods. The free surface is described along the edges of the triangles, which can have different slopes. By applying a parsimonious strategy, the stress components are eliminated from the discrete equations and only the velocities are left as unknowns in the triangles. Together with the local support of the P0 finite-volume stencil, the parsimonious approach allows the minimizing of core memory requirements for the simulation. Efficient perfectly matched layer absorbing conditions have been designed for damping the waves around the grid. The numerical dispersion of this FV formulation is similar to that of O(,x2) staggered-grid finite-difference (FD) formulations when considering structured triangular meshes. The validation has been performed with analytical solutions of several canonical problems and with numerical solutions computed with a well-established FD time-domain method in heterogeneous media. In the presence of a free surface, the finite-volume method requires 10 triangles per wavelength for a flat topography, and fifteen triangles per wavelength for more complex shapes, well below the criteria required by the staircase approximation of O(,x2) FD methods. Comparisons between the frequency-domain finite-volume and the O(,x2) rotated FD methods also show that the former is faster and less memory demanding for a given accuracy level, an attractive feature for frequency-domain seismic inversion. We have thus developed an efficient method for 2-D P,SV -wave modelling on structured triangular meshes as a tool for frequency-domain full-waveform inversion. Further work is required to improve the accuracy of the method on unstructured meshes. [source]


Helium fine structure: Unsolved many-body-QED Problem

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, Issue 14 2006
Ingvar LindgrenArticle first published online: 12 JUL 200
Abstract Theoretical and experimental results for the fine-structure separation of the lowest 3P state of the helium atom disagree significantly. The experiment is well checked and the disagreement is most likely due to deficiency in the theoretical evaluation, which is based upon power expansion of the Bethe-Salpeter equation. A new numerical technique is introduced for combining QED and electron-correlation calculations, which in the future might contribute to resolving the issue. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2006 [source]


Entry dynamics and acoustics/infrasonic/seismic analysis for the Neuschwanstein meteorite fall

METEORITICS & PLANETARY SCIENCE, Issue 10 2004
D. O. REVELLE
This includes ground-based photographic and radiometer data as well as infrasound and seismic data from this very significant bolide event (Spurný et al. 2002, 2003). We have also used these data to model the entry of Neuschwanstein, including the expected dynamics, energetics, panchromatic luminosity, and associated fragmentation effects. In addition, we have calculated the differential efficiency of acoustical waves for Neuschwanstein and used these values to compare against the efficiency calculated using available ground-based infrasound data. This new numerical technique has allowed the source height to be determined independent of ray tracing solutions. We have also carried out theoretical ray tracing for a moving point source (not strictly a cylindrical line emission) and for an infinite speed line source. In addition, we have determined the ray turning heights as a function of the source height for both initially upward and downward propagating rays, independent of the explicit ray tracing (detailed propagation path) programs. These results all agree on the origins of the acoustic emission and explicit source heights for Neuschwanstein for the strongest infrasonic signals. Calculated source energies using more than four different independent approaches agree that Neuschwanstein was certainly <500 kg in initial mass, given the initial velocity of 20.95 km/s, resulting in an initial source energy ,0.0157-0.0276 kt TNT equivalent (4.185 times 1012 J). Local source energies at the calculated infrasonic/seismic source altitudes are up to two orders of magnitude smaller than this initial source energy. [source]


A New Numerical Approach for a Detailed Multicomponent Gas Separation Membrane Model and AspenPlus Simulation

CHEMICAL ENGINEERING & TECHNOLOGY (CET), Issue 7 2005
M. H. Murad Chowdhury
Abstract A new numerical solution approach for a widely accepted model developed earlier by Pan [1] for multicomponent gas separation by high-flux asymmetric membranes is presented. The advantage of the new technique is that it can easily be incorporated into commercial process simulators such as AspenPlusTM [2] as a user-model for an overall membrane process study and for the design and simulation of hybrid processes (i.e., membrane plus chemical absorption or membrane plus physical absorption). The proposed technique does not require initial estimates of the pressure, flow and concentration profiles inside the fiber as does in Pan's original approach, thus allowing faster execution of the model equations. The numerical solution was formulated as an initial value problem (IVP). Either Adams-Moulton's or Gear's backward differentiation formulas (BDF) method was used for solving the non-linear differential equations, and a modified Powell hybrid algorithm with a finite-difference approximation of the Jacobian was used to solve the non-linear algebraic equations. The model predictions were validated with experimental data reported in the literature for different types of membrane gas separation systems with or without purge streams. The robustness of the new numerical technique was also tested by simulating the stiff type of problems such as air dehydration. This demonstrates the potential of the new solution technique to handle different membrane systems conveniently. As an illustration, a multi-stage membrane plant with recycle and purge streams has been designed and simulated for CO2 capture from a 500,MW power plant flue gas as a first step to build hybrid processes and also to make an economic comparison among different existing separation technologies available for CO2 separation from flue gas. [source]