New Drug Targets (new + drug_target)

Distribution by Scientific Domains


Selected Abstracts


Crossing the barrier: oxysterols as cholesterol transporters and metabolic modulators in the brain

JOURNAL OF INTERNAL MEDICINE, Issue 6 2006
I. BJÖRKHEM
Abstract. A normal brain function requires constant levels of cholesterol, and the need for constancy seems to be higher here than in any other organ. Nature has met this need by isolation of brain cholesterol by a highly efficient blood,brain barrier. As a low synthesis of cholesterol is present in the brain, a mechanism for compensatory elimination is required. A decade ago we made the unexpected finding that the favoured mechanism for this involves conversion into 24S-hydroxycholesterol, followed by diffusion over the blood,brain barrier. Recent studies by us and others on this new pathway have given new insights into the mechanisms by which cholesterol homeostasis is maintained in the brain. We recently demonstrated a flux of another oxygenated product of cholesterol, 27-hydroxycholesterol, in the opposite direction. The latter flux may be important for neurodegeneration, and may be the link between hypercholesterolaemia and Alzheimer's disease. An overview of the above studies is presented and the possibility that the cholesterol 24S-hydroxylase in the brain may be important for memory and learning and that it may be a new drug target is discussed. [source]


A new role for P2 receptors: talking with calcium-activated potassium channels

NEUROGASTROENTEROLOGY & MOTILITY, Issue 11 2007
P. P. Bertrand
Abstract Purinergic fast synaptic transmission may play a very subtle role in regulating the excitability of enteric circuits. That is one of the important findings in a new paper by Ren and Galligan in the current issue of this Journal. They first provide compelling evidence that P2X3 receptors (ionotropic purine receptors) are expressed by guinea-pig motor and interneurons and that these subtypes mediate the purinergic fast excitatory postsynaptic potential (EPSP). They also found that the P2X3 -mediated depolarization was often followed by a hyperpolarization. This is an intriguing finding because if the purinergic fast EPSPs are also followed by a hyperpolarization, then it could play a role in truncating bursts of synaptic potentials or in shaping periodic synaptic input. The hyperpolarization is caused by calcium entry through the P2X3 receptor which then activates a calcium-activated potassium (KCa) channel. Surprisingly, the hyperpolarization was not affected by any of the standard blockers of calcium- or voltage-activated K+ channels suggesting that a novel KCa channel is present in the enteric neurons. Such a wide-spread channel could well have an important physiological role and could be an important new drug target for regulating reflex activity in the enteric nervous system. [source]


Stearoyl-CoA desaturase as a new drug target for obesity treatment

OBESITY REVIEWS, Issue 2 2005
A. Dobrzyn
Summary Stearoyl-CoA desaturase (SCD), the rate-limiting enzyme in monounsaturated fatty acid synthesis, has recently been shown to be the critical control point regulating hepatic lipogenesis and lipid oxidation. As several manifestations of the metabolic syndrome and type 2 diabetes mellitus are associated with alterations in intracellular lipid partitioning, we propose that SCD1 may be a potential therapeutic target in the treatment of obesity and the metabolic syndrome. In support of this notion, we have shown that SCD1-deficient mice have increased energy expenditure, reduced body adiposity, increased insulin sensitivity and are resistant to diet-induced obesity and liver steatosis. Furthermore, SCD1 was found to be specifically repressed during leptin-mediated weight loss, and leptin-deficient ob/ob mice lacking SCD1 showed marked correction of the hypometabolic phenotype and hepatic steatosis. Much evidence indicates that the direct anti-steatotic effect of SCD1 deficiency stems from increased fatty acid oxidation and decreased lipid synthesis. All of these findings reveal that pharmacological manipulation of SCD activity might be of benefit in the treatment of obesity, diabetes, liver steatosis and other diseases of the metabolic syndrome. [source]


Bacterial protein kinase inhibitors

DRUG DEVELOPMENT RESEARCH, Issue 3 2010
Michio Kurosu
Abstract Protein kinases have become the second most important group of drug targets for the pharmaceutical industry next to G-protein-coupled receptors. Thus, over the past decade, a significant number of small molecules have been generated for protein kinase drug optimization programs. The vast majority of kinase inhibitors target the ATP binding site of the enzyme; however, the poor protein kinase selectivity of ATP-competitive protein kinase inhibitors (PKIs) limits their use for treating chronic diseases. In contrast, for inhibitors of bacterial signal transduction systems targeting bacterial kinase(s), there are no such selectivity requirements as long as the inhibitor does not act on any human kinases at the effective concentrations for killing bacteria in vivo. Protein phosphorylation in bacteria is performed by two-component signal transduction systems (2CSTSs) and eukaryotic-like serine/threonine kinases or bacterial tyrosine kinases. Recently, a large number of studies of protein kinases essential for sustaining bacterial growth and kinases required for virulence have been reported. Thus, bacterial protein kinases offer considerable potential as new drug targets. To identify bacterial PKIs, large chemical libraries of ATP-competitive inhibitors developed for eukaryotic protein kinases are an invaluable asset. This manuscript reviews progress on the development of prokaryotic protein kinase inhibitors. Drug Dev Res 2010. © 2010 Wiley-Liss, Inc. [source]


Experimental validation of metabolic pathway modeling

FEBS JOURNAL, Issue 13 2008
An illustration with glycolytic segments from Entamoeba histolytica
In the search for new drug targets in the human parasite Entamoeba histolytica, metabolic control analysis was applied to determine, experimentally, flux control distribution of amebal glycolysis. The first (hexokinase, hexose-6-phosphate isomerase, pyrophosphate-dependent phosphofructokinase (PPi -PFK), aldolase and triose-phosphate isomerase) and final (3-phosphoglycerate mutase, enolase and pyruvate phosphate dikinase) glycolytic segments were reconstituted in vitro with recombinant enzymes under near-physiological conditions of pH, temperature and enzyme proportion. Flux control was determined by titrating flux with each enzyme component. In parallel, both glycolytic segments were also modeled by using the rate equations and kinetic parameters previously determined. Because the flux control distribution predicted by modeling and that determined by reconstitution were not similar, kinetic interactions among all the reconstituted components were experimentally revised to unravel the causes of the discrepancy. For the final segment, it was found that 3-phosphoglycerate was a weakly competitive inhibitor of enolase, whereas PPi was a moderate inhibitor of 3-phosphoglycerate mutase and enolase. For the first segment, PPi was both a strong inhibitor of aldolase and a nonessential mixed-type activator of amebal hexokinase; in addition, lower Vmax values for hexose-6-phosphate isomerase, PPi -PFK and aldolase were induced by PPi or ATP inhibition. It should be noted that PPi and other metabolites were absent from the 3-phosphoglycerate mutase and enolase or aldolase and hexokinase kinetics experiments, but present in reconstitution experiments. Only by incorporating these modifications in the rate equations, modeling predicted values of flux control distribution, flux rate and metabolite concentrations similar to those experimentally determined. The experimentally validated segment models allowed ,in silico experimentation' to be carried out, which is not easy to achieve in in vivo or in vitro systems. The results predicted a nonsignificant effect on flux rate and flux control distribution by adding parallel routes (pyruvate kinase for the final segment and ATP-dependent PFK for the first segment), because of the much lower activity of these enzymes in the ameba. Furthermore, modeling predicted full flux-control by 3-phosphoglycerate mutase and hexokinase, in the presence of low physiological substrate and product concentrations. It is concluded that the combination of in vitro pathway reconstitution with modeling and enzyme kinetics experimentation permits a more comprehensive understanding of the pathway behavior and control properties. [source]


Pharmacogenetics and personalised medicine

FUNDAMENTAL & CLINICAL PHARMACOLOGY, Issue 5 2002
Werner Kalow
ABSTRACT The traditional concern of pharmacogenetics was Mendelian (monogenic) variation, which visibly affected some drug responses. Pharmacogenetics was broadened by the observation that multifactorial genetic influences, in conjunction with environmental factors, usually determine drug responses. Variability of gene expression, a new theme of the science of genetics, also affects pharmacogenetics; for example, enhanced enzyme activity does not necessarily indicate a mutation, but may be the consequence of a drug-induced enhancement of gene expression. Methodological advances permit the conversion of pharmacogenetics into the broad practice of pharmacogenomics; this improves the possibility of identifying genetic causes of common diseases, which means establishing new drug targets, thereby stimulating the search for new drugs. While the main medical effect of pharmacogenetics was an improvement of drug safety, pharmacogenomics is hoped to improve drug efficacy. On the way to personalized medicine, we may stepwise improve the chances of choosing the right drug for a patient by categorizing patients into genetically definable classes that have similar drug effects (as, for example, human races, or any population group carrying a particular set of genes). It is wise to expect that, even after we have reached the goal to establish personalized medicine, we will not have eliminated all uncertainties. [source]


Structure-Based Design and Synthesis of the First Weak Non-Phosphate Inhibitors for IspF, an Enzyme in the Non-Mevalonate Pathway of Isoprenoid Biosynthesis

HELVETICA CHIMICA ACTA, Issue 6 2007
Corinne Baumgartner
Abstract In this paper, we describe the structure-based design, synthesis, and biological evaluation of cytosine derivatives and analogues that inhibit IspF, an enzyme in the non-mevalonate pathway of isoprenoid biosynthesis. This pathway is responsible for the biosynthesis of the C5 precursors to isoprenoids, isopentenyl diphosphate (IPP, 1) and dimethylallyl diphosphate (DMAPP, 2; Scheme,1). The non-mevalonate pathway is the sole source for 1 and 2 in the protozoan Plasmodium parasites. Since mammals exclusively utilize the alternative mevalonate pathway, the enzymes of the non-mevalonate pathway have been identified as attractive new drug targets in the fight against malaria. Based on computer modeling (cf. Figs.,2 and 3), new cytosine derivatives and analogues (Fig.,1) were selected as potential drug-like inhibitors of IspF protein, and synthesized (Schemes,2,5). Determination of the enzyme activity by 13C-NMR spectroscopy in the presence of the new ligands showed inhibitory activities for some of the prepared cytosine and pyridine-2,5-diamine derivatives in the upper micromolar range (IC50 values; Table). The data suggest that it is possible to inhibit IspF protein without binding to the polar diphosphate binding site and the side chain of Asp56,, which interacts with the ribose moiety of the substrate and substrate analogues. Furthermore, a new spacious sub-pocket was discovered which accommodates aromatic spacers between cytosine derivatives or analogues (binding to ,Pocket III') and rings that occupy the flexible hydrophobic region of ,Pocket II'. The proposed binding mode remains to be further validated by X-ray crystallography. [source]


Genomics and systems biology , how relevant are the developments to veterinary pharmacology, toxicology and therapeutics?

JOURNAL OF VETERINARY PHARMACOLOGY & THERAPEUTICS, Issue 3 2005
R. F. WITKAMP
This review discusses some of the recent developments in genomics and its current and future relevance for veterinary pharmacology and toxicology. With the rapid progress made in this field several new approaches in pharmacological and toxicological research have developed and drug discovery and drug development strategies have changed dramatically. In this review, the term genomics is used to encompass the three sub-disciplines transcriptomics, proteomics and metabolomics (or metabonomics) to describe the formation and fate of mRNA, proteins and metabolites, respectively. The current status and methods of the technology and some applications are briefly described. Although the DNA sequencing programmes are receiving considerable attention, the real value of genomics for pharmacology and toxicology is brought by the parallel developments in bio-informatics, bio-statistics and the integration of biology with mathematics and information technology. The ultimate level of integration is now mostly called systems biology, where mRNA, proteins and metabolites are being analysed in parallel, using a complete arsenal of analytical techniques (DNA-array, LC-MS/MS, GC-MS/MS, NMR, etc.). The information thus collected is analysed, integrated, linked to database information and translated to pathways and systems. This approach offers an enormous potential to study disease mechanisms and find new drug targets. Thus far, genomics and systems biology have not been introduced significantly in typical veterinary pharmacological and toxicological research programmes. The high costs and complexity connected to these large projects often form major obstacles for research groups with limited budgets. In other veterinary areas and disciplines, including infectious diseases, animal production and food-safety more examples of application are available. Genomics and bio-informatics provide outstanding opportunities to study pharmacology and toxicology in a more holistic way, taking into account the complexity of biological systems and based on the basic principles of physiology and the concept of homeostasis. Knowledge of biology, in vivo and in vitro models, and comparative pharmacology/toxicology is essential here, creating excellent opportunities for the veterinary trained scientist. [source]


A glimpse into the clinical proteome of human malaria parasites Plasmodium falciparum and Plasmodium vivax

PROTEOMICS - CLINICAL APPLICATIONS, Issue 11 2009
Pragyan Acharya
Abstract Malaria causes a worldwide annual mortality of about a million people. Rapidly evolving drug-resistant species of the parasite have created a pressing need for the identification of new drug targets and vaccine candidates. By developing fractionation protocols to enrich parasites from low-parasitemia patient samples, we have carried out the first ever proteomics analysis of clinical isolates of early stages of Plasmodium falciparum (Pf) and P. vivax. Patient-derived malarial parasites were directly processed and analyzed using shotgun proteomics approach using high-sensitivity MS for protein identification. Our study revealed about 100 parasite-coded gene products that included many known drug targets such as Pf hypoxanthine guanine phosphoribosyl transferase, Pf L -lactate dehydrogenase, and Plasmepsins. In addition, our study reports the expression of several parasite proteins in clinical ring stages that have never been reported in the ring stages of the laboratory-cultivated parasite strain. This proof-of-principle study represents a noteworthy step forward in our understanding of pathways elaborated by the parasite within the malaria patient and will pave the way towards identification of new drug and vaccine targets that can aid malaria therapy. [source]


N -Acyl amino acids and N -acyl neurotransmitter conjugates: neuromodulators and probes for new drug targets

BRITISH JOURNAL OF PHARMACOLOGY, Issue 8 2010
Mark Connor
The myriad functions of lipids as signalling molecules is one of the most interesting fields in contemporary pharmacology, with a host of compounds recognized as mediators of communication within and between cells. The N -acyl conjugates of amino acids and neurotransmitters (NAANs) have recently come to prominence because of their potential roles in the nervous system, vasculature and the immune system. NAAN are compounds such as glycine, GABA or dopamine conjugated with long chain fatty acids. More than 70 endogenous NAAN have been reported although their physiological role remains uncertain, with various NAAN interacting with a low affinity at G protein coupled receptors (GPCR) and ion channels. Regardless of their potential physiological function, NAAN are of great interest to pharmacologists because of their potential as flexible tools to probe new sites on GPCRs, transporters and ion channels. NAANs are amphipathic molecules, with a wide variety of potential fatty acid and headgroup moieties, a combination which provides a rich source of potential ligands engaging novel binding sites and mechanisms for modulation of membrane proteins such as GPCRs, ion channels and transporters. The unique actions of subsets of NAAN on voltage-gated calcium channels and glycine transporters indicate that the wide variety of NAAN may provide a readily exploitable resource for defining new pharmacological targets. Investigation of the physiological roles and pharmacological potential of these simple lipid conjugates is in its infancy, and we believe that there is much to be learnt from their careful study. [source]


Advances in histamine pharmacology reveal new drug targets

BRITISH JOURNAL OF PHARMACOLOGY, Issue 1 2009
Paul L Chazot
This Themed Issue consists of three reviews and 11 original articles authored by internationally respected industrial and academic pharmacologists from across three continents. It derives from the highly successful symposium on ,The H3 and H4 histamine receptors: the antihistamines for the 21st century', which took place at EPHAR 2008 in Manchester University, and encompasses new roles, new compounds and exciting new therapeutic areas for histamine. [source]