New Contrast Agent (new + contrast_agent)

Distribution by Scientific Domains


Selected Abstracts


Evaluation of rHA labeled with Gd,DTPA for blood pool imaging and targeted contrast delivery

CONTRAST MEDIA & MOLECULAR IMAGING, Issue 1 2010
Jim M. Wild
Abstract A new contrast agent was developed by linking Gd,DTPA chelate to recombinant human albumin in the laboratory. The molar relaxivity of the new agent was tested in aqueous solution at B0 1.5,T and temperature 20°C. The soluble compound had a higher molar longitudinal relaxivity and molar transverse relaxivity in water (r1,=,7.2,s,1,mM,1, r2,=,18.4,s,1,mM,1) than those measured for Gd,DTPA solution (r1,=,3.5,s,1,mM,1, r2,=,5.5,s,1,mM,1). The performance of the compound as a blood pool agent was investigated with soluble and microparticulate forms of the compound and comparisons were made with Gd,DTPA and the polymeric blood-pool agent, Gadomer. T1 -weighted imaging experiments show that the soluble compound acts as a highly effective blood pool agent with hyperintensity in the vasculature persisting beyond 2,h post administration, compared with free Gd,DTPA, which was cleared from the blood pool after approximately 10,min. The clearance kinetics of the new agents were examined, due to the incomplete elimination within 14 days post injection; both rHA labeled compounds are probably not suitable for development as routine blood pool contrast media. However, with free sites on the Gd-loaded rHA molecule, there are possibilities for binding the agent to antibodies in the laboratory, which was demonstrated, and thus there exist potential applications for in vivo molecular imaging with this agent. Copyright © 2010 John Wiley & Sons, Ltd. [source]


Enhanced Left Ventricular Endocardial Border Delineation with an Intravenous Injection of SonoVue, a New Echocardiography Contrast Agent:

ECHOCARDIOGRAPHY, Issue 8 2000
A European Multicenter Study
The safety and efficacy of SonoVue (also referred to as BR1), a new contrast agent for delineating endocardial border of the left ventricle after intravenous administration, was assessed. Two hundred and eighteen patients with suspected coronary artery disease undergoing fundamental echocardiography for the assessment of left ventricle were enrolled in a prospective multicenter, single blind, cross-over study with random sequence allocation of four different doses of SonoVue. Endocardial border definition in the apical and parasternal views was scored as O = not visible, 1 = barely visible, and 2 = well visualized before and after contrast enhancement. Analysis was performed by two pairs of off-site observers. Safety of SonoVue was also assessed. Results of our study indicated that the mean improvements in the endocardial border visualization score were as follows: 3.1 ± 7.8 (95% CI, 2.5 and 3.7) for 0.5 ml, 3.4 ± 8.0 (95% CI, 2.8 and 4.0) for 1 ml, 3.4 ± 7.9 (95% CI, 2.8 and 4.0) for 2 ml, and 3.7 ± 8.0 (95% CI, 3.1 and 4.3) for 4 ml (P < 0.05 for all doses from baseline). Changes from baseline in endocardial visualization scores were also seen in the apical views (P < 0.05) and they were dose-dependent (P < 0.001). Similar enhancements of endocardial visualization scores were observed in the apical views in patients with suboptimal baseline echocardiographic images. Diagnostic confidence for assigning a score and image quality also were significantly better following contrast enhancement. No significant changes in the laboratory parameters and vital signs were noted following contrast enhancement, and the side effects were minimal. It was concluded that SonoVue is safe and effective in delineating endocardial border, including in patients with suboptimal baseline images. [source]


A new gadolinium-based contrast agent for magnetic resonance imaging of brain tumors: Kinetic study on a C6 rat glioma model

JOURNAL OF MAGNETIC RESONANCE IMAGING, Issue 2 2001
Emmanuel Fonchy
Abstract T1 -weighted magnetic resonance imaging (MRI) was used to evaluate the potential interest of a new Gd-based contrast agent, termed P760, to characterize brain tumor heterogeneity and vascularization and to delineate regions containing permeable vessels. The C6 rat glioma model was used as a model of high-grade glioblastoma. The signal enhancement was measured as a function of time in the vascular compartment and in different regions of interest (ROIs) within the tumor after the injection of 0.02 mmol kg,1 of P760. The results were compared to those obtained after the injection of 0.1 mmol kg,1 of Gd-DOTA. We showed that P760, in spite of a Gd concentration five times smaller, produces an enhancement in the blood pool similar to that produced by Gd-DOTA. It was shown that P760 makes possible an excellent delineation of regions containing vessels with a damaged blood-brain barrier (BBB). Images acquired 5,10 minutes after P760 injection showed the location of permeable vessels more accurately than Gd-DOTA-enhanced images. The enhancement produced in the tumor by P760 was, however, less than that produced by Gd-DOTA. The extravasation and/or diffusion rate of P760 in the interstitial medium were found to be strongly reduced, compared to those found with Gd-DOTA. This study suggests that the new contrast agent has promising capabilities in clinical imaging of brain tumors. J. Magn. Reson. Imaging 2001;14:97,105. © 2001 Wiley-Liss, Inc. [source]


Imaging of the lymphatic system: new horizons,

CONTRAST MEDIA & MOLECULAR IMAGING, Issue 6 2006
Tristan Barrett
Abstract The lymphatic system is a complex network of lymph vessels, lymphatic organs and lymph nodes. Traditionally, imaging of the lymphatic system has been based on conventional imaging methods like computed tomography (CT) and magnetic resonance imaging (MRI), whereby enlargement of lymph nodes is considered the primary diagnostic criterion for disease. This is particularly true in oncology, where nodal enlargement can be indicative of nodal metastases or lymphoma. CT and MRI on their own are, however, anatomical imaging methods. Newer imaging methods such as positron emission tomography (PET), dynamic contrast-enhanced MRI (DCE-MRI) and color Doppler ultrasound (CDUS) provide a functional assessment of node status. None of these techniques is capable of detecting flow within the lymphatics and, thus, several intra-lymphatic imaging methods have been developed. Direct lymphangiography is an all-but-extinct method of visualizing the lymphatic drainage from an extremity using oil-based iodine contrast agents. More recently, interstitially injected intra-lymphatic imaging, such as lymphoscintigraphy, has been used for lymphedema assessment and sentinel node detection. Nevertheless, radionuclide-based imaging has the disadvantage of poor resolution. This has lead to the development of novel systemic and interstitial imaging techniques which are minimally invasive and have the potential to provide both structural and functional information; this is a particular advantage for cancer imaging, where anatomical depiction alone often provides insufficient information. At present the respective role each modality plays remains to be determined. Indeed, multi-modal imaging may be more appropriate for certain lymphatic disorders. The field of lymphatic imaging is ever evolving, and technological advances, combined with the development of new contrast agents, continue to improve diagnostic accuracy. Published in 2006 by John Wiley & Sons, Ltd. [source]