New Cell Lines (new + cell_line)

Distribution by Scientific Domains


Selected Abstracts


Molecular characterization of regenerated cardiomyocytes derived from adult mesenchymal stem cells

CONGENITAL ANOMALIES, Issue 1 2002
Keiichi Fukuda
ABSTRACT, We recently isolated a cardiomyogenic (CMG) cell line from murine bone marrow stroma, and in this paper characterize regenerated cardiomyocytes derived from adult mesenchymal stem cells at the molecular level. Stromal cells were immortalized, exposed to 5-azacytidine, and repeatedly screened for spontaneously beating cells. CMG cells began to beat spontaneously after 2 weeks, and beat synchronously after 3 weeks. They exhibited sinus-node-like or ventricular-cell-like action potentials. Analysis of the isoforms of contractile protein genes, such as of myosin and ,-actin, indicated that their phenotype was similar to that of fetal ventricular cardiomyocytes. The cells expressed Nkx2.5, GATA4, TEF-1, and MEF2-C mRNA before 5-azacytidine exposure, and MEF2-A and MEF2-D after exposure. CMG cells expressed ,1A, ,1B, and ,1D -adrenergic receptor mRNA prior to differentiation, and ,1, ,2 -adrenergic and M1, M2 -muscarinic receptors after acquiring the cardiomyocyte phenotype. Phenylephrine induced phosphorylation of ERK1/ 2, and the phosphorylation was inhibited by prazosin. Isoproterenol increased the cAMP level 38-fold and beating rate, cell motion, % shortening, and contractile velocity by 48%, 38%, 27%, and 51%, respectively, and the increases were blocked by CGP20712A (,1 -selective blocker). Car-bachol increased IP3 32-fold, and the increase was inhibited by AFDX116 (M2 -selective blocker). These findings demonstrated that the regenerated cardiomyocytes were capable of responding to adrenergic and muscarinic stimulation. This new cell line provides a model for the study of cardiomyocyte transplantation. [source]


Establishment of OC3 oral carcinoma cell line and identification of NF-,B activation responses to areca nut extract

JOURNAL OF ORAL PATHOLOGY & MEDICINE, Issue 2 2004
Shu-Chun Lin
Background:, Cell lines derived from oral squamous cell carcinoma (OSCC) exposed to variable etiological factors can bestow advantages in understanding the molecular and cellular alterations pertaining to environmental impacts. Most OSCC cell lines have been established from smoker patients or areca chewing/smoker patients, carrying the genomic alterations in p53. Methods:, A new cell line, oral carcinoma 3 (OC3), was established from an OSCC in a long-term areca (betel) chewer who does not smoke. Cellular and molecular features of OC3 were determined by variable assays. Results:, The cultured monolayer cells were mainly polygonal and had the expression of cytokeratin 14. The chromosomal analysis using comparative genomic hybridization has revealed the gain in chromosomes 1q, 5q, and 8q, the loss in 4q, 6p, and 8p as well as the gain of entire chromosome 20. Loss of heterozygosity and instability in multiple microsatellite markers in chromosome 4q were also noted. OC3 cells bear wild-type p53 coding sequence and have a high level of p53 expression. Its p21 expression was similar to that in normal human oral keratinocyte (NHOK). Interestingly, activation of nuclear factor ,B (NF-,B) in OC3 cells following the treatment of areca nut extract was observed. Conclusion:, OC3 cell line could be valuable in understanding the genetic impairments and phenotypic changes associated with areca in oral keratinocyte. [source]


A luminescent bioassay for thyroid blocking antibodies

CLINICAL ENDOCRINOLOGY, Issue 3 2001
N. J. Jordan
Thyroid blocking antibodies (TBAb) have a role in the development of hypothyroidism and in the neonate are responsible for transient hypothyroidism. Specific measurement of TBAb requires a bioassay, but current methods are lengthy and cumbersome. We describe a rapid luciferase-based method for the detection of TBAb using the lulu* cell line which is suitable for the provision of a clinical service Chinese hamster ovary (CHO) cells were transfected with human TSH-R together with G418 resistance and a cAMP responsive luciferase construct. Stable pools of transfected cells were selected and clones identified by limiting dilution. Clone lulu* gave the best response to stimulation by TSH and was used to develop a bioassay for TBAb. The luminescent bioassay conditions have been optimized and validated using 12 serum samples from patients found to be TBAb positive in a bioassay using an established method quantifying cAMP by radioimmunoassay (RIA). The effect of thyroid stimulating antibodies (TSAb) on the calculation of Inhibition Index (InI) using two previously described formulae have been investigated and we have used serum containing both TSAb and TBAb to investigate detection of TBAb in samples containing more than one type of activity. Lulu* displays a dose dependent increase in luciferase expression in response to stimulation with bovine (b) TSH which is more effective in serum free medium than in salt free buffer. TSH stimulated luciferase expression can be inhibited by TBAb in either serum or an immunoglobulin preparation. Using optimized assay conditions, challenging 10% serum against 1 U/l bTSH in culture medium, we have tested 31 euthyroid sera to determine a reference range: InI values >23% were considered positive. Twelve samples previously shown to contain TBAb by an established method quantifying cAMP by RIA were positive by the luciferase-based assay. Of control sera, 20/20 systemic lupus erythematosus, 13/14 rheumatoid arthritis, 12/12 multinodular goitre were negative. We demonstrated that if more complex formulae are used to calculate InI, false positive TBAb results can be obtained in samples containing only TSAb. Finally, when sera contain both TSAb and TBAb, the net activity of stimulating and blocking antibodies is detected in the bioassay. Where TSAb are also present, analysis of serum may be required at several dilutions to detect TBAb. We describe the production of a new cell line, lulu*, and its use to develop a luminescent bioassay for TBAb suitable for clinical use. Comparing two established methods of calculating TBAb, we found that they do not give identical results. In light of this, the high prevalence reported for TBAb in some studies has to be considered with caution. [source]


Characterization of apoptosis induced by grouper iridovirus in two newly established cell lines from barramundi, Lates calcarifer (Bloch)

JOURNAL OF FISH DISEASES, Issue 11 2008
Y-S Lai
Abstract Two new cell lines have been established from the muscle and swim bladder tissues of barramundi, Lates calcarifer, and designated as BM (barramundi muscle) and BSB (barramundi swimbladder), respectively. The cells multiplied well at 28 °C in Leibovitz's L-15 medium supplemented with 10% foetal bovine serum, and have been continuously subcultured more than 100 times to date. Morphologically, BM cells were mostly fibroblastic, whereas BSB were mostly epithelial. Both cell lines were susceptible to grouper iridovirus (GIV) and displayed characteristics of apoptosis after viral infection. The induction of apoptosis was further assayed in GIV-infected BM and BSB cells by various methods. The inhibition of cell growth by GIV was demonstrated by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay. Morphological observations revealed typical apoptotic features in the infected cells, including cell shrinkage and rounding, chromosome condensation and formation of apoptotic body-like vesicles. Chromosome fragmentation was detected by DNA laddering and TUNEL assays. Finally, the appearance of phosphotidylserine on the outer leaflet of apoptotic cell membranes was confirmed by annexin V staining. This is the first report of apoptosis induced by GIV in fish cells. [source]


Establishment and characterization of two new cell lines derived from flounder, Paralichthys olivaceus (Temminck & Schlegel)

JOURNAL OF FISH DISEASES, Issue 11-12 2003
M S Kang
Abstract Two new cell cultures from flounder, Paralichthys olivaceus (Temminck & Schlegel), flounder fin (FFN) cells from fin tissue and flounder spleen (FSP) cells from spleen tissue, were established and characterized. The cells multiplied well in Eagle's minimum essential medium, supplemented with 10% foetal bovine serum, and have been subcultured more than 100 times, becoming continuous cell lines. Modal diploid chromosome number of FFN and FSP cells was 64 and 62, respectively. Polymerase chain reaction products were obtained from FFN and FSP cells with primer sets of microsatellite markers of flounder. Optimal growth temperature was 20 °C and consisted of epithelioid cells. FFN and FSP cells showed cytopathic effects after inoculation of infectious pancreatic necrosis virus, marine birnavirus, chum salmon virus, infectious haematopoietic necrosis virus, spring viraemia of carp virus and hirame rhabdovirus. Thus these new cell lines may be useful for studying a wide range of fish viruses. [source]


New established melanoma cell lines: genetic and biochemical characterization of cell division cycle

JOURNAL OF THE EUROPEAN ACADEMY OF DERMATOLOGY & VENEREOLOGY, Issue 1 2003
A Vozza
ABSTRACT Background Cancer might be envisaged as the result of a genetic process causing the unregulated proliferation of a given cell as well as its inability to undergo differentiation and/or apoptosis. Alterations of genes regulating cell division cycle appear to play a key role in the development of human cancer. Objective On the bases of the above considerations, we decided to establish new cell lines from human melanoma specimens, in order to analyse the molecular alterations in primary preparations of malignant cells. Results The present paper describes two new established cell lines and their genetic and biochemical features. Both the melanoma cell lines show inactivation of the cyclin-dependent kinase inhibitor gene, CDKN2A/p16INK4A, thus demostrating that this alteration occurs in primary human melanomas. No other alterations were observable when we investigated several different cell cycle genes including those encoding cyclins, cyclin-dependent kinases and cyclin-dependent kinase inhibitors. Analyses at protein level by means of immunoblotting confirmed the results obtained at the genetic level. Moreover, the inducibility of a pivotal cyclin-dependent kinase inhibitor gene, namely p21CIP1 gene, was obtained by treating the cells with histone deacetylase inhibitors, namely butyrate and phenylbutyrate. Conclusions Our results suggest a primary role of cyclin-dependent kinase inhibitor genes inactivation in the origin of human melanoma and allow the proposal of new therapeutic strategies based on the transcriptional activation of p21CIP1 gene. [source]


Establishment of six new human biliary tract carcinoma cell lines and identification of MAGEH1 as a candidate biomarker for predicting the efficacy of gemcitabine treatment

CANCER SCIENCE, Issue 4 2010
Hidenori Ojima
The aim of this study was to establish new biliary tract carcinoma (BTC) cell lines and identify predictive biomarkers for the potential effectiveness of gemcitabine therapy. Surgical specimens of BTC were transplanted directly into immunodeficient mice to establish xenografts, then subjected to in vitro cell culture. The gemcitabine sensitivity of each cell line was determined and compared with the genome-wide gene expression profile. A new predictive biomarker candidate was validated using an additional cohort of gemcitabine-treated BTC cases. From 55 BTC cases, we established 19 xenografts and six new cell lines. Based on their gemcitabine sensitivity, 10 BTC cell lines (including six new and four publicly available ones) were clearly categorized into two groups, and MAGEH1 mRNA expression in the tumor cells showed a significant negative correlation with their sensitivity to gemcitabine. Immunohistochemically, MAGEH1 protein was detected in three (50%) out of six sensitive cell lines, and four (100%) out of four resistant cell lines. In the validation cohort of gemcitabine-treated recurrence cases, patients were categorized into "effective" and "non-effective" groups according to the RECIST guidelines for assessment of chemotherapeutic effects. MAGEH1 protein expression was detected in two (40%) out of five "effective" cases and all four (100%) "non-effective" cases. We have established a new BTC bioresource that covers a wide range of biological features, including drug sensitivity, and is linked with clinical information. Negative expression of MAGEH1 protein serves as a potential predictive marker for the effectiveness of gemcitabine therapy in BTC. (Cancer Sci 2010; 101: 882,888) [source]