Network-like Structure (network-like + structure)

Distribution by Scientific Domains


Selected Abstracts


Mesoscopic Network Structure of a Semi-Rigid Polyion Complex Nested in a Polycationic Hydrogel

ADVANCED MATERIALS, Issue 46 2009
Zi Liang Wu
A dual network gel, consisting of a micrometer-scaled network-like structure of a semi-rigid polyion complex nested in a nanometer-scaled polycationic network, has been developed by polymerization of a cationic monomer in the presence of a small amount of semi-rigid polyanion as dopant. Self-assembly and viscoelastic phase separation (see figure) compete with each other during the polymerization and render the micrometer-scaled network structure, which is permanently frozen by the subsequent gelation. [source]


Micelles-Encapsulated Microcapsules for Sequential Loading of Hydrophobic and Water-Soluble Drugs

MACROMOLECULAR RAPID COMMUNICATIONS, Issue 11 2010
Weijun Tong
Abstract Layer-by-layer (LbL) assembly was conducted on CaCO3 microparticles pre-doped with polystyrene- block -poly(acrylic acid) (PS- b -PAA) micelles, and resulted in micelles encapsulation in the microcapsules after core removal. Distribution of the micelles in the templates and capsules was characterized by transmission electron microscopy and confocal laser scanning microscopy. The micelles inside the capsules connected with each other to form a chain and network-like structure with a higher density near the capsule walls. The hydrophobic PS cores were then able to load small uncharged hydrophobic drugs while the negatively charged PAA corona could induce spontaneous deposition of water-soluble positively charged drugs such as doxorubicin. [source]


Carboxylated multiwall carbon nanotube-reinforced thermotropic liquid crystalline polymer nanocomposites

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 1 2008
Sang Ki Park
Abstract Thermotropic liquid crystalline polymer (TLCP) nanocomposites reinforced with carboxylated multiwall carbon nanotube (c-MWCNT) were prepared through melt compounding in a twin screw extruder. The thermal stability of TLCP/c-MWCNT nanocomposites increased with even a small amount of c-MWCNT added. The rheological properties of the TLCP/c-MWCNT nanocomposites were depended on the c-MWCNT contents. The contents of c-MWCNT have a slight effect on the complex viscosity of TLCP/c-MWCNT nanocomposites due to the high-shear thinning of TLCP. The storage modulus of TLCP/c-MWCNT nanocomposites was increased with increasing c-MWCNT content. This result can be deduced that the nanotube,nanotube interactions were more dominant, and some interconnected or network-like structures were formed in the TLCP/c-MWCNT nanocomposites. Incorporation of very small amount of c-MWCNT improved the mechanical properties of TLCP/c-MWCNT nanocomposites, and this was attributed to the reinforcement effect of c-MWCNT with high aspect ratio and their uniform dispersion through acid treatment in the TLCP matrix. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source]


Reduced gap junctional intercellular communication and altered biological effects in mouse osteoblast and rat liver oval cell lines transfected with dominant-negative connexin 43

MOLECULAR CARCINOGENESIS, Issue 4 2003
Brad L. Upham
Abstract Gap junctional intercellular communication (GJIC) maintains normal growth and differentiation of cells in a tissue. The intercellular molecules traversing gap junctions are largely unknown, but the molecular weight (MW) cutoff is normally 1200 Da. No differences in dye transfer were observed in normal or vector controls of WB-F344 rat liver epithelial or mouse osteoblastic MC3T3-E1 cells with either Lucifer Yellow (LY) with a MW of 457 Da (LY-457) or LY with a MW of 649 Da (LY-649). Transfection of a dominant negative-connexin 43 (Cx43) gene decreased GJIC (>50%) when LY-649 was used, however, normal GJIC was observed in both cell lines when LY-457 was used. Therefore, the MW cut off in these clones was considerably less than the wild type. The dominant negative clones of the MC3T3-E1 cells exhibited over 90% less alkaline phosphatase (ALPase) activity and calcium deposition after the induction of differentiation. Similarly, dominant negative Cx43 inhibited gene expression of ALPase and bone sialoprotein but not osteocalcin in MC3T3-E1. WB-F344 cells normally exhibit a biphasic response to 12- O -tetradecanoylphorbol-13-acetate (TPA) where inhibition of GJIC recovers after 2 h, but the dominant negative clones showed no recovery from inhibition of GJIC by TPA. Dominant negative Cx43 also inhibited the formation of network-like structures by WB-F344 cells on Matrigel. These results demonstrate that the dominant negative gene transfected into cell types containing the wild-type connexins result in diminished channel sizes, thus allowing the determination of whether distinct biological endpoints, i.e., differentiation, are dependent upon either small or high MW intercellular signals. © 2003 Wiley-Liss, Inc. [source]