Home About us Contact | |||
Net CO2 Uptake (net + co2_uptake)
Selected AbstractsEcosystem CO2 exchange and plant biomass in the littoral zone of a boreal eutrophic lakeFRESHWATER BIOLOGY, Issue 8 2003T. Larmola Summary 1In order to study the dynamics of primary production and decomposition in the lake littoral, an interface zone between the pelagial, the catchment and the atmosphere, we measured ecosystem/atmosphere carbon dioxide (CO2) exchange in the littoral zone of an eutrophic boreal lake in Finland during two open water periods (1998,1999). We reconstructed the seasonal net CO2 exchange and identified the key factors controlling CO2 dynamics. The seasonal net ecosystem exchange (NEE) was related to the amount of carbon accumulated in plant biomass. 2In the continuously inundated zones, spatial and temporal variation in the density of aerial shoots controlled CO2 fluxes, but seasonal net exchange was in most cases close to zero. The lower flooded zone had a net CO2 uptake of 1.8,6.2 mol m,2 per open water period, but the upper flooded zone with the highest photosynthetic capacity and above-ground plant biomass, had a net CO2 loss of 1.1,7.1 mol m,2 per open water period as a result of the high respiration rate. The excess of respiration can be explained by decomposition of organic matter produced on site in previous years or leached from the catchment. 3Our results from the two study years suggest that changes in phenology and water level were the prime cause of the large interannual difference in NEE in the littoral zone. Thus, the littoral is a dynamic buffer and source for the load of allochthonous and autochthonous carbon to small lakes. [source] Carbon dioxide uptake, water relations and drought survival for Dudleya saxosa, the ,rock live-forever', growing in small soil volumesFUNCTIONAL ECOLOGY, Issue 4 2007P. S. NOBEL Summary 1Although many plants grow in rock crevices and other regions of small soil volume, including over 20 000 epiphytic and hemi-epiphytic species, analyses of the actual soil volume occupied, the water availability in that soil, the water-storage capacity in the shoots and underground organs, and the photosynthetic pathway utilized have rarely been combined. 2Dudleya saxosa (M.F. Jones) Britton and Rose (Crassulaceae), growing in the Sonoran Desert, has very shallow roots that occupied soil volumes averaging only 43 × 10,6 m3 per medium-sized plant. This volume of soil can hold about the same amount of water (10 g) as can be stored in the leaves, corm and roots combined (11 g), but at a sufficiently high water potential for transfer to the plant for less than 1 week after a substantial rainfall. 3About 80% of the net carbon dioxide uptake by D. saxosa over a 24-h period occurred during the daytime (C3) under wet conditions, the daily total decreasing by 34% and the pattern shifting to nocturnal net CO2 uptake (CAM) after 46 days' drought. Seventy-seven days' drought eliminated its daily net CO2 uptake. 4Stomatal frequency was only 67 mm,2 on the adaxial (upper) surface and twofold lower on the abaxial surface. The cuticle was thick, 34 µm for the adaxial surface. Leaves had 24 mesophyll cell layers, leading to a high mesophyll cell surface area per unit leaf area of 142. 5The three leaf anatomical features plus utilization of CAM increased net CO2 uptake per unit of water transpired, and helped D. saxosa thrive in a small soil volume, with the underground corm being a major supplier of water to the succulent leaves during 2.5 months of drought. The maximum water-holding capacity of the soil explored by the roots closely matched the maximum water-holding capacity of the plant, reflecting the conservative strategy used by D. saxosa in a stressful semi-arid environment. [source] Atmospheric impact of bioenergy based on perennial crop (reed canary grass, Phalaris arundinaceae, L.) cultivation on a drained boreal organic soilGCB BIOENERGY, Issue 3 2010NARASINHA J. SHURPALI Abstract Marginal organic soils, abundant in the boreal region, are being increasingly used for bioenergy crop cultivation. Using long-term field experimental data on greenhouse gas (GHG) balance from a perennial bioenergy crop [reed canary grass (RCG), Phalaris arundinaceae L.] cultivated on a drained organic soil as an example, we show here for the first time that, with a proper cultivation and land-use practice, environmentally sound bioenergy production is possible on these problematic soil types. We performed a life cycle assessment (LCA) for RCG on this organic soil. We found that, on an average, this system produces 40% less CO2 -equivalents per MWh of energy in comparison with a conventional energy source such as coal. Climatic conditions regulating the RCG carbon exchange processes have a high impact on the benefits from this bioenergy production system. Under appropriate hydrological conditions, this system can even be carbon-negative. An LCA sensitivity analysis revealed that net ecosystem CO2 exchange and crop yield are the major LCA components, while non-CO2 GHG emissions and costs associated with crop production are the minor ones. Net bioenergy GHG emissions resulting from restricted net CO2 uptake and low crop yields, due to climatic and moisture stress during dry years, were comparable with coal emissions. However, net bioenergy emissions during wet years with high net uptake and crop yield were only a third of the coal emissions. As long-term experimental data on GHG balance of bioenergy production are scarce, scientific data stemming from field experiments are needed in shaping renewable energy source policies. [source] The contribution of bryophytes to the carbon exchange for a temperate rainforestGLOBAL CHANGE BIOLOGY, Issue 8 2003Evan H. DeLucia Abstract Bryophytes blanket the floor of temperate rainforests in New Zealand and may influence a number of important ecosystem processes, including carbon cycling. Their contribution to forest floor carbon exchange was determined in a mature, undisturbed podocarp-broadleaved forest in New Zealand, dominated by 100,400-year-old rimu (Dacrydium cupressimum) trees. Eight species of mosses and 13 species of liverworts contributed to the 62% cover of the diverse forest floor community. The bryophyte community developed a relatively thin (depth <30 mm), but dense, canopy that experienced elevated CO2 partial pressures (median 46.6 Pa immediately below the bryophyte canopy) relative to the surrounding air (median 37.6 Pa at 100 mm above the canopy). Light-saturated rates of net CO2 exchange from 14 microcosms collected from the forest floor were highly variable; the maximum rate of net uptake (bryophyte photosynthesis , whole-plant respiration) per unit ground area at saturating irradiance was 1.9 ,mol m,2 s,1 and in one microcosm, the net rate of CO2 exchange was negative (respiration). CO2 exchange for all microcosms was strongly dependent on water content. The average water content in the microcosms ranged from 1375% when fully saturated to 250% when air-dried. Reduction in water content across this range resulted in an average decrease of 85% in net CO2 uptake per unit ground area. The results from the microcosms were used in a model to estimate annual carbon exchange for the forest floor. This model incorporated hourly variability in average irradiance reaching the forest floor, water content of the bryophyte layer, and air and soil temperature. The annual net carbon uptake by forest floor bryophytes was 103 g m,2, compared to annual carbon efflux from the forest floor (bryophyte and soil respiration) of ,1010 g m,2. To put this in perspective of the magnitude of the components of CO2 exchange for the forest floor, the bryophyte layer reclaimed an amount of CO2 equivalent to only about 10% of forest floor respiration (bryophyte plus soil) or ,11% of soil respiration. The contribution of forest floor bryophytes to productivity in this temperate rainforest was much smaller than in boreal forests, possibly because of differences in species composition and environmental limitations to photosynthesis. Because of their close dependence on water table depth, the contribution of the bryophyte community to ecosystem CO2 exchange may be highly responsive to rapid changes in climate. [source] Would transformation of C3 crop plants with foreign Rubisco increase productivity?PLANT CELL & ENVIRONMENT, Issue 2 2004A computational analysis extrapolating from kinetic properties to canopy photosynthesis ABSTRACT Genetic modification of Rubisco to increase the specificity for CO2 relative to O2 (,) would decrease photorespiration and in principle should increase crop productivity. When the kinetic properties of Rubisco from different photosynthetic organisms are compared, it appears that forms with high , have low maximum catalytic rates of carboxylation per active site (kcc). If it is assumed that an inverse relationship between kcc and , exists, as implied from measurements, and that an increased concentration of Rubisco per unit leaf area is not possible, will increasing , result in increased leaf and canopy photosynthesis? A steady-state biochemical model for leaf photosynthesis was coupled to a canopy biophysical microclimate model and used to explore this question. C3 photosynthetic CO2 uptake rate (A) is either limited by the maximum rate of Rubisco activity (Vcmax) or by the rate of regeneration of ribulose-1,5-bisphosphate, in turn determined by the rate of whole chain electron transport (J). Thus, if J is limiting, an increase in , will increase net CO2 uptake because more products of the electron transport chain will be partitioned away from photorespiration into photosynthesis. The effect of an increase in , on Rubisco-limited photosynthesis depends on both kcc and the concentration of CO2 ([CO2]). Assuming a strict inverse relationship between kcc and ,, the simulations showed that a decrease, not an increase, in , increases Rubisco-limited photosynthesis at the current atmospheric [CO2], but the increase is observed only in high light. In crop canopies, significant amounts of both light-limited and light-saturated photosynthesis contribute to total crop carbon gain. For canopies, the present average , found in C3 terrestrial plants is supra-optimal for the present atmospheric [CO2] of 370 µmol mol,1, but would be optimal for a CO2 concentration of around 200 µmol mol,1, a value close to the average of the last 400 000 years. Replacing the average Rubisco of terrestrial C3 plants with one having a lower and optimal , would increase canopy carbon gain by 3%. Because there are significant deviations from the strict inverse relationship between kcc and ,, the canopy model was also used to compare the rates of canopy photosynthesis for several Rubiscos with well-defined kinetic constants. These simulations suggest that very substantial increases (> 25%) in crop carbon gain could result if specific Rubiscos having either a higher , or higher kcc were successfully expressed in C3 plants. [source] How does photorespiration modulate leaf amino acid contents?PLANT CELL & ENVIRONMENT, Issue 7 2002A dual approach through modelling, metabolite analysis Abstract The aim of this work was to establish the quantitative impact of photorespiration on leaf amino acid contents. Attached leaves of wheat and potato were incubated for 30,40 min under defined conditions in which net CO2 uptake (A) was manipulated by irradiance, ambient CO2 or ambient O2. The incubated portion of the leaf was sampled by a rapid-quench method and photorespiratory flux (vo) was modelled from the measured rate of net CO2 uptake. In both wheat and potato, the ratio between glycine and serine showed a strong positive correlation with vo. Aspartate and alanine correlated negatively with vo but glutamate and glutamine showed less clear relationships. In potato, glutamate and glutamine did not correlate clearly with either A or vo. In wheat, glutamine showed a general increase with A but no relationship with vo, whereas 2-oxoglutarate contents correlated positively with vo and negatively with A. As a result, glutamine : glutamate and glutamine : 2-oxoglutarate increased with net CO2 uptake in wheat, observations that are attributed primarily to imperfect and variable coupling between the supply of NH3 in primary nitrogen assimilation and the associated delivery of 2-oxoglutarate to the chloroplast. A simple theoretical analysis is used to illustrate the potentially marked impact of primary nitrogen assimilation on leaf glutamine, even against a background of high rates of photorespiratory ammonia recycling. [source] Responses of CAM species to increasing atmospheric CO2 concentrationsPLANT CELL & ENVIRONMENT, Issue 8 2000P. M. Drennan ABSTRACT Crassulacean acid metabolism (CAM) species show an average increase in biomass productivity of 35% in response to a doubled atmospheric CO2 concentration. Daily net CO2 uptake is similarly enhanced, reflecting in part an increase in chlorenchyma thickness and accompanied by an even greater increase in water-use efficiency. The responses of net CO2 uptake in CAM species to increasing atmospheric CO2 concentrations are similar to those for C3 species and much greater than those for C4 species. Increases in net daily CO2 uptake by CAM plants under elevated atmospheric CO2 concentrations reflect increases in both Rubisco-mediated daytime CO2 uptake and phosphoenolpyruvate carboxylase (PEPCase)-mediated night-time CO2 uptake, the latter resulting in increased nocturnal malate accumulation. Chlorophyll contents and the activities of Rubisco and PEPCase decrease under elevated atmospheric CO2, but the activated percentage for Rubisco increases and the KM(HCO3,) for PEPCase decreases, resulting in more efficient photosynthesis. Increases in root:shoot ratios and the formation of additional photosynthetic organs, together with increases in sucrose-Pi synthase and starch synthase activity in these organs under elevated atmospheric CO2 concentrations, decrease the potential feedback inhibition of photosynthesis. Longer-term studies for several CAM species show no downward acclimatization of photosynthesis in response to elevated atmospheric CO2 concentrations. With increasing temperature and drought duration, the percentage enhancement of daily net CO2 uptake caused by elevated atmospheric CO2 concentrations increases. Thus net CO2 uptake, productivity, and the potential area for cultivation of CAM species will be enhanced by the increasing atmospheric CO2 concentrations and the increasing temperatures associated with global climate change. [source] |