Nevada

Distribution by Scientific Domains
Distribution within Earth and Environmental Science

Kinds of Nevada

  • sierra nevada


  • Selected Abstracts


    ANALYTICAL REGRESSION STAGE ANALYSIS FOR DEVILS HOLE, DEATH VALLEY NATIONAL PARK, NEVADA,

    JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 4 2006
    M.S. Bedinger
    ABSTRACT: Devils Hole is a collapse depression connected to the regional carbonate aquifer of the Death Valley ground water flow system. Devils Hole pool is home to an endangered pupfish that was threatened when irrigation pumping in nearby Ash Meadows lowered the pool stage in the 1960s. Pumping at Ash Meadows ultimately ceased, and the stage recovered until 1988, when it began to decline, a trend that continued until at least 2004. Regional ground water pumping and changes in recharge are considered the principal potential stresses causing long term stage changes. A regression was found between pumpage and Devils Hole water levels. Though precipitation in distant mountain ranges is the source of recharge to the flow system, the stage of Devils Hole shows small change in stage from 1937 to 1963, a period during which ground water withdrawals were small and the major stress on stage would have been recharge. Multiple regression analyses, made by including the cumulative departure from normal precipitation with pumpage as independent variables, did not improve the regression. Drawdown at Devils Hole was calculated by the Theis Equation for nearby pumping centers to incorporate time delay and drawdown attenuation. The Theis drawdowns were used as surrogates for pumpage in multiple regression analyses. The model coefficient for the regression, R2= 0.982, indicated that changes in Devils Hole were largely due to effects of pumping at Ash Meadows, Amargosa Desert, and Army 1. [source]


    POTENTIAL ECONOMIC IMPACTS OF CHANGES IN WATER AVAILABILITY ON AGRICULTURE IN THE TRUCKEE AND CARSON RIVER BASINS, NEVADA, USA,

    JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 4 2006
    Levan Elbakidze
    ABSTRACT: Effects of climate change are likely to be detected in nearly all sectors and regions of the economy, with both winners and losers. One of the consequences of climatic changes could be altered regional water supplies. This paper presents an investigation of regional agricultural implications of changes in water availability. Specifically, using a profit maximization approach, the economic consequences of altered water availability in the Great Basin of Nevada are analyzed in terms of the effects on net returns of agricultural producers. Under the scenarios analyzed in this paper, it is found that with adequate water systems, increase in streamflow and consequent increase in water availability could significantly benefit agricultural producers of this region. Net returns to irrigators could increase by 8 to 13 percent, not taking into account the possibility of changes in crop yields and prices. It is also shown that the benefits from increased water availability are sensitive to likely crop yield and price changes. The potential for adverse effects of climatic changes on water supply is also considered by analyzing the effects of decreased water availability. Under decreased water availability scenarios, farmer net returns decrease substantially. [source]


    MERCURY IN WATER AND SEDIMENT OF STEAMBOAT CREEK, NEVADA: IMPLICATIONS FOR STREAM RESTORATION,

    JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 4 2001
    Mitchell Blum
    ABSTRACT: The objective of this study was to characterize the sources, concentrations, and distribution of total and methylmercury in water, and channel and bank sediments of Steamboat Creek, Nevada. This information was needed to begin to assess the potential impacts of stream restoration on mercury pollution in this tributary to the Truckee River. The Truckee River flows into Pyramid Lake, a terminal water body home to one endangered and one threatened fish species, where stable pollutants will accumulate over time. Mercury in Steamboat Creek was originally derived from its headwaters, Washoe Lake, where several gold and silver mills that utilized mercury were located. In the 100 plus years since ore processing occurred, mercury-laden alluvium has been deposited in the stream channel and on streambanks where it is available for remobilization. Total mercury concentrations measured in unfiltered water from the creek ranged from 82 to 419 ng/L, with greater than 90 percent of this mercury being particle-bound (> 0.45 (m). Mercury in sediments ranged from 0.26 to 10.2 pg/g. Methylmercury concentrations in sediments of Steamboat Creek were highest in wetlands, lower in the stream channel, and still lower in streambank settings. Methylmercury concentrations in water were 0.63 to 1.4 ng/L. A streambank restoration plan, which includes alterations to channel geometry and wetland creation or expansion, has been initiated for the creek. Data developed indicate that streambank stabilization could reduce the mercury loading to the Creek and that wetland construction could exacerbate methylmercury production. [source]


    HYDROLOGIC IMPLICATIONS OF GREATER GROUND-WATER RECHARGE TO LAS VEGAS VALLEY, NEVADA,

    JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 5 2000
    David J. Donovan
    ABSTRACT: Published estimates of natural recharge in Las Vegas Valley range between 21,000 and 35,000 acre-feet per year. This study examined the underlying assumptions of previous investigations and evaluated the altitude-precipitation relationships. Period-of-record averages from high altitude precipitation gages established in the 1940s through the 1990s, were used to determine strong local altitude-precipitation relationships that indicate new total precipitation and natural recharge amounts and a new spatial distribution of that recharge. This investigation calculated about 51,000 acre-feet per year of natural recharge in the Las Vegas Hydrographic Basin, with an additional 6,000 acre-feet per year from areas tributary to Las Vegas Valley, for a total of 57,000 acre-feet per year. The total amount of natural recharge is greater than estimates from earlier investigations and is consistent with a companion study of natural discharge, which estimated 53,000 acre-feet per year of outflow. The hydrologic implications of greater recharge in Las Vegas Valley infer a more accurate ground-water budget and a better understanding of ground-water recharge that will be represented in a ground-water model. Thus model based ground-water management scenarios will more realistically access impacts to the ground-water system. [source]


    Influence of Temporal Scale of Sampling on Detection of Relationships between Invasive Plants and the Diversity Patterns of Plants and Butterflies

    CONSERVATION BIOLOGY, Issue 6 2004
    RALPH MAC NALLY
    But monitoring is often neglected because it can be expensive and time-consuming. Accordingly, it is valuable to determine whether the temporal extent of sampling alters the validity of inferences about the response of diversity measures to environmental variables affected by restoration actions. Non-native species alter ecosystems in undesirable ways, frequently homogenizing flora and fauna and extirpating local populations of native species. In the Mojave Desert, invasion of salt-cedar (Tamarix ramosissima Ledeb.) and human efforts to eradicate salt-cedar have altered vegetation structure, vegetation composition, and some measures of faunal diversity. We examined whether similar inferences about relationships between plants and butterflies in the Muddy River drainage (Nevada, U.S.A.) could have been obtained by sampling less intensively (fewer visits per site over the same period of time) or less extensively (equal frequency of visits but over a more limited period of time). We also tested whether rank order of butterfly species with respect to occurrence rate (proportion of sites occupied) would be reflected accurately in temporal subsamples. Temporal subsampling did not lead to erroneous inferences about the relative importance of six vegetation-based predictor variables on the species richness of butterflies. Regardless of the temporal scale of sampling, the species composition of butterflies was more similar in sites with similar species composition of plants. The rank order of occurrence of butterfly species in the temporal subsamples was highly correlated with the rank order of species occurrence in the full data set. Thus, similar inferences about associations between vegetation and butterflies and about relative occurrence rates of individual species of butterflies could be obtained by less intensive or extensive temporal sampling. If compromises between temporal intensity and extent of sampling must be made, our results suggest that maximizing temporal extent will better capture variation in biotic interactions and species occurrence. Resumen:,El monitoreo es un componente importante de los esfuerzos de restauración y de manejo adoptivo. Pero el monitoreo a menudo es desatendido porque puede ser costoso y consume tiempo. En consecuencia, es valioso determinar si la extensión temporal del muestreo altera la validez de inferencias sobre la respuesta de medidas de diversidad a variables ambientales afectadas por acciones de restauración. Las especies no nativas alteran a los ecosistemas de manera indeseable, frecuentemente homogenizan la flora y fauna y extirpan poblaciones locales de especies nativas. En el Desierto Mojave, la invasión de Tamarix ramosissima Ledeb. y los esfuerzos humanos para erradicarla han alterado la estructura y composición de la vegetación y algunas medidas de diversidad de fauna. Examinamos si se podían obtener inferencias similares sobre las relaciones entre plantas y mariposas en la cuenca Muddy River (Nevada, E.U.A.) muestreando menos intensivamente (menos visitas por sitio en el mismo período de tiempo) o menos extensivamente (igual frecuencia de visitas pero sobre un período de tiempo más limitado). También probamos si el orden jerárquico de especies de mariposas con respecto a la tasa de ocurrencia (proporción de sitios ocupados) se reflejaba con precisión en las submuestras temporales. El submuestreo temporal no condujo a inferencias erróneas acerca de la importancia relativa de seis variables predictivas basadas en vegetación sobre la riqueza de especies de mariposas. A pesar de la escala temporal del muestreo, la composición de especies de mariposas fue más similar en sitios con composición de especies de plantas similar. El orden jerárquico de ocurrencia de especies de mariposas en las muestras subtemporales estuvo muy correlacionado con el orden jerárquico de ocurrencia de especies en todo el conjunto de datos. Por lo tanto, se pudieron obtener inferencias similares de las asociaciones entre vegetación y mariposas y de las tasas de ocurrencia relativa de especies individuales de mariposas con muestreo temporal menos intensivo o extensivo. Si se deben hacer compromisos entre la intensidad y extensión de muestreo temporal, nuestros resultados sugieren que la maximización de la extensión temporal capturará la variación en interacciones bióticas y ocurrencia de especies más adecuadamente. [source]


    Spatial Tests of the Pesticide Drift, Habitat Destruction, UV-B, and Climate-Change Hypotheses for California Amphibian Declines

    CONSERVATION BIOLOGY, Issue 6 2002
    Carlos Davidson
    In California, the transport and deposition of pesticides from the agriculturally intensive Central Valley to the adjacent Sierra Nevada is well documented, and pesticides have been found in the bodies of Sierra frogs. Pesticides are therefore a plausible cause of declines, but to date no direct links have been found between pesticides and actual amphibian population declines. Using a geographic information system, we constructed maps of the spatial pattern of declines for eight declining California amphibian taxa, and compared the observed patterns of decline to those predicted by hypotheses of wind-borne pesticides, habitat destruction, ultraviolet radiation, and climate change. In four species, we found a strong positive association between declines and the amount of upwind agricultural land use, suggesting that wind-borne pesticides may be an important factor in declines. For two other species, declines were strongly associated with local urban and agricultural land use, consistent with the habitat-destruction hypothesis. The patterns of decline were not consistent with either the ultraviolet radiation or climate-change hypotheses for any of the species we examined. Resumen: Por mucho tiempo se ha sugerido que los pesticidas transportados por el viento son una causa de la declinación de anfibios en áreas sin destrucción de hábitat evidente. En California, el transporte y depósito de pesticidas provenientes del Valle Central, donde se practica la agricultura intensiva, hacia la Sierra Nevada adyacente está bien documentado y se han encontrado pesticidas en el cuerpo de ranas de la Sierra. Por lo tanto, los pesticidas son una causa verosímil de las declinaciones, pero a la fecha no se han encontrado relaciones directas entre los pesticidas y la declinación de anfibios. Construimos mapas de sistemas de información geográfica del patrón espacial de las declinaciones de ocho taxones de anfibios de California, y comparamos los patrones de declinación observados con los esperados por las hipótesis de pesticidas transportados por el viento, la destrucción del hábitat, la radiación ultravioleta y el cambio climático. En cuatro especies, encontramos una fuerte asociación positiva entre las declinaciones y la cantidad de tierras de uso agrícola en dirección contraria a los vientos, lo que sugiere que los pesticidas transportados por el viento pueden ser un factor importante en las declinaciones. Para otras dos especies, las declinaciones se asociaron contundentemente con el uso del suelo urbano y agrícola, lo cual es consistente con la hipótesis de la destrucción del hábitat. Los patrones de declinación no fueron consistentes con la hipótesis de la radiación ultravioleta ni la de cambio climático para ninguna de las especies examinadas. [source]


    Trends in Pediatric Melanoma Mortality in the United States, 1968 through 2004

    DERMATOLOGIC SURGERY, Issue 2 2008
    KEVAN G. LEWIS MD
    BACKGROUND AND OBJECTIVE Mortality from melanoma in children is a poorly understood and controversial problem in dermatology. There is paucity of research into this important public health dilemma. The purpose of this study was to characterize pediatric melanoma mortality in the United States and to evaluate trends over time. METHODS AND MATERIALS Deaths were derived from a database of more than 75 million records of the U.S. Center for National Health Statistics based on routine death certification. Information on age, race, gender, and geographic location was available for years 1968 through 2004. RESULTS During the 37-year period, there were 643 deaths attributed to melanoma in children under 20 years of age in the United States, an average of 18 per year. The overall age-adjusted mortality rate for melanoma in children was 2.25 deaths per year (per 10 million at-risk individuals). Mortality rates were strongly associated with age. In the oldest age group (age 15,19 years) the mortality rate was approximately an order of magnitude 8,18 times higher compared to younger age groups. Mortality among males was 25% higher than females. Mortality rates for white children were more than twice as high as black children. Overall mortality from melanoma in children declined steadily from 1968 to 2004. The highest mortality rates were observed in Idaho, Nevada, Arizona, and New Mexico. CONCLUSIONS Although mortality from melanoma among children in the United State is low, the magnitude of the public health burden from this preventable cause of death is substantial. In contrast to results of studies suggesting that the incidence of melanoma may be rising in children and adolescents, the data suggest that mortality in these groups may be falling. Additional study is warranted to further characterize and ultimately reduce mortality from childhood melanoma. [source]


    Range size, taxon age and hotspots of neoendemism in the California flora

    DIVERSITY AND DISTRIBUTIONS, Issue 3 2010
    Nathan J. B. Kraft
    Abstract Aim, Sustaining biological diversity requires the protection of the ecological, evolutionary and landscape-level processes that generate it. Here, we identify areas of high neoendemism in a global diversity hotspot, the California flora, using range size data and molecular-based estimates of taxon age. Location, California, USA. Methods, We compiled distribution and range size data for all plant taxa endemic to California and internal transcribed spacer (ITS)-based age estimates for 337 putative neoendemics (15% of the endemic flora). This information was combined to identify areas in the state with high proportions of young and restricted-range taxa. We overlaid the distribution of neoendemic hotspots on maps of currently protected lands and also explored correlations between our diversity measures and climate. Results, The central coast of California, the Sierra Nevada and the San Bernardino Range contained endemics with the most restricted distributions on average, while areas in the Desert and Great Basin provinces found within the state were composed of the youngest neoendemics on average. Diversity measures that took age and range size into account shifted the estimate of highest endemic diversity in the state towards the Desert and Great Basin regions relative to simple counts of endemic species richness. Our diversity measures were poorly correlated with climate and topographic heterogeneity. Main conclusions, Substantial portions of California with high levels of plant neoendemism fall outside of protected lands, indicating that additional action will be needed to preserve the geographic areas apparently associated with high rates of plant diversification. The neoendemic flora of the deserts appears particularly young in our analyses, which may reflect the relatively recent origin of desert environments within the state. [source]


    The geography of climate change: implications for conservation biogeography

    DIVERSITY AND DISTRIBUTIONS, Issue 3 2010
    D. D. Ackerly
    Abstract Aim, Climate change poses significant threats to biodiversity, including impacts on species distributions, abundance and ecological interactions. At a landscape scale, these impacts, and biotic responses such as adaptation and migration, will be mediated by spatial heterogeneity in climate and climate change. We examine several aspects of the geography of climate change and their significance for biodiversity conservation. Location, California and Nevada, USA. Methods, Using current climate surfaces (PRISM) and two scenarios of future climate (A1b, 2070,2099, warmer-drier and warmer-wetter), we mapped disappearing, declining, expanding and novel climates, and the velocity and direction of climate change in California and Nevada. We also examined fine-scale spatial heterogeneity in protected areas of the San Francisco Bay Area in relation to reserve size, topographic complexity and distance from the ocean. Results, Under the two climate change scenarios, current climates across most of California and Nevada will shrink greatly in extent, and the climates of the highest peaks will disappear from this region. Expanding and novel climates are projected for the Central Valley. Current temperature isoclines are projected to move up to 4.9 km year,1 in flatter regions, but substantially slower in mountainous areas because of steep local topoclimate gradients. In the San Francisco Bay Area, climate diversity within currently protected areas increases with reserve size and proximity to the ocean (the latter because of strong coastal climate gradients). However, by 2100 of almost 500 protected areas (>100 ha), only eight of the largest are projected to experience temperatures within their currently observed range. Topoclimate variability will further increase the range of conditions experienced and needs to be incorporated in future analyses. Main Conclusions, Spatial heterogeneity in climate, from mesoclimate to topoclimate scales, represents an important spatial buffer in response to climate change, and merits increased attention in conservation planning. [source]


    Limited phylogeographic structure in the flightless ground beetle, Calathus ruficollis, in southern California

    DIVERSITY AND DISTRIBUTIONS, Issue 5 2007
    Stylianos Chatzimanolis
    ABSTRACT The California Floristic Province is home to more than 8000 species of beetles, yet their geographical patterns of supra- and infraspecific diversity remain largely unexplored. In this paper, we investigate the phylogeography and population demographics of a flightless ground beetle, Calathus ruficollis (Coleoptera: Carabidae), in southern California. We sampled 136 specimens from 25 localities divided into 10 populations using a fragment of the mitochondrial cytochrome oxidase I gene. We tested several hypotheses, including the association of geography with particular clades and populations, the degree of differentiation among regions, and the expansion of populations. Parsimony and Bayesian phylogenetic analyses along with nested clade analysis and amova indicate a deep split between the southern Sierra Nevada population and populations south and west. This split corresponds closely to the split between subspecies C. ruficollis ignicollis (southern Sierra Nevada) and C. ruficollis ruficollis. Populations otherwise exhibit limited geographical structure, though Fst values indicate some local differentiation. Mismatch distributions and Fu's Fs indicate range expansion of several populations, suggesting that some structure may have been obscured by recent exchange. The population of C. ruficollis on Santa Cruz Island, which might have been expected to be isolated, shares several haplotypes with mainland populations, appearing to represent multiple colonizations. [source]


    Patterns of spatial autocorrelation of assemblages of birds, floristics, physiognomy, and primary productivity in the central Great Basin, USA

    DIVERSITY AND DISTRIBUTIONS, Issue 3 2006
    Erica Fleishman
    ABSTRACT We fitted spatial autocorrelation functions to distance-based data for assemblages of birds and for three attributes of birds' habitats at 140 locations, separated by up to 65 km, in the Great Basin (Nevada, USA). The three habitat characteristics were taxonomic composition of the vegetation, physical structure of the vegetation, and a measure of primary productivity, the normalized difference vegetation index, estimated from satellite imagery. We found that a spherical model was the best fit to data for avifaunal composition, vegetation composition, and primary productivity, but the distance at which spatial correlation effectively was zero differed substantially among data sets (c. 30 km for birds, 20 km for vegetation composition, and 60 km for primary productivity). A power-law function was the best fit to data for vegetation structure, indicating that the structure of vegetation differed by similar amounts irrespective of distance between locations (up to the maximum distance measured). Our results suggested that the spatial structure of bird assemblages is more similar to vegetation composition than to either vegetation structure or primary productivity, but is autocorrelated over larger distances. We believe that the greater mobility of birds compared with plants may be responsible for this difference. [source]


    Effects of wet meadow riparian vegetation on streambank erosion.

    EARTH SURFACE PROCESSES AND LANDFORMS, Issue 7 2002

    Abstract We measured the effect of wet meadow vegetation on the bank strength and failure mechanics of a meandering montane meadow stream, the South Fork of the Kern River at Monache Meadow, in California's Sierra Nevada. Streambanks colonized by ,wet' graminoid meadow vegetation were on average five times stronger than those colonized by ,dry' xeric meadow and scrub vegetation. Our measurements show that strength is correlated with vegetation density indicators, including stem counts, standing biomass per unit area, and the ratio of root mass to soil mass. Rushes appear better than sedges at stabilizing coarse bar surfaces, while sedges are far more effective at stabilizing actively eroding cut banks. Wet meadow floodplain vegetation creates a composite cut bank configuration (a cohesive layer overlying cohesionless materials) that erodes via cantilever failure. Field measurements and a geotechnical model of cantilever stability show that by increasing bank strength, wet meadow vegetation increases the thickness, width, and cohesiveness of a bank cantilever, which, in turn, increases the amount of time required to undermine, detach, and remove bank failure blocks. At Monache Meadow, it takes approximately four years to produce and remove a 1 m wide wet meadow bank block. Wet meadow vegetation limits bank migration rates by increasing bank strength, altering bank failure modes, and reducing bank failure frequency. Copyright © 2002 John Wiley & Sons, Ltd. [source]


    Assessing ecosystem threats from global and regional change: hierarchical modeling of risk to sagebrush ecosystems from climate change, land use and invasive species in Nevada, USA

    ECOGRAPHY, Issue 1 2010
    Bethany A. Bradley
    Global change poses significant challenges for ecosystem conservation. At regional scales, climate change may lead to extensive shifts in species distributions and widespread extirpations or extinctions. At landscape scales, land use and invasive species disrupt ecosystem function and reduce species richness. However, a lack of spatially explicit models of risk to ecosystems makes it difficult for science to inform conservation planning and land management. Here, I model risk to sagebrush (Artemisia spp.) ecosystems in the state of Nevada, USA from climate change, land use/land cover change, and species invasion. Risk from climate change is based on an ensemble of 10 atmosphere-ocean general circulation model (AOGCM) projections applied to two bioclimatic envelope models (Mahalanobis distance and Maxent). Risk from land use is based on the distribution of roads, agriculture, and powerlines, and on the spatial relationships between land use and probability of cheatgrass Bromus tectorum invasion in Nevada. Risk from land cover change is based on probability and extent of pinyon-juniper (Pinus monophylla; Juniperus spp.) woodland expansion. Climate change is most likely to negatively impact sagebrush ecosystems at the edges of its current range, particularly in southern Nevada, southern Utah, and eastern Washington. Risk from land use and woodland expansion is pervasive throughout Nevada, while cheatgrass invasion is most problematic in the northern part of the state. Cumulatively, these changes pose major challenges for conservation of sagebrush and sagebrush obligate species. This type of comprehensive assessment of ecosystem risk provides managers with spatially explicit tools important for conservation planning. [source]


    Topographic controls on spatial patterns of conifer transpiration and net primary productivity under climate warming in mountain ecosystems

    ECOHYDROLOGY, Issue 4 2009
    C. Tague
    Abstract The response of forests to a warmer climate depends upon the direct impacts of temperature on forest ecophysiology and indirect effects related to a range of biogeophysical processes. In alpine regions, reduced snow accumulation and earlier melt of seasonal snowpacks are expected hydrologic consequences of warming. For forests, this leads to earlier soil moisture recharge, and may increase summer drought stress. At the same time, increased air temperature alters plant net primary productivity. Most models of climate change impacts focus either on hydrologic behaviour or ecosystem structure or function. In this study we address the interactions between them. We use a coupled model of eco-hydrologic processes to estimate changes in evapotranspiration and vegetation productivity under temperature warming scenarios. Results from Yosemite National Park, in the California Sierra Nevada, suggest that for most snow-dominated elevations, the shift in the timing of recharge is likely to lead to declines in productivity and vegetation water use, even with increased water-use efficiency associated with elevated atmospheric CO2 concentrations. The strength of this effect, however, depends upon interactions between several factors that vary substantially across elevation gradients, including the initial timing of melt relative to the summer growing season, vegetation growth, and the extent to which initial vegetation is water-limited or temperature-limited. These climate-driven changes in vegetation water use also have important implications for summer streamflow. Results from this analysis provide a framework that can be used to develop strategic measurement campaigns and to extrapolate from local measurements of vegetation responses to watershed scale patterns. Copyright © 2009 John Wiley & Sons, Ltd. [source]


    Integration of genotoxicity and population genetic analyses in kangaroo rats (Dipodomys merriami) exposed to radionuclide contamination at the Nevada Test Site, USA

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 2 2001
    Christopher W. Theodorakis
    Abstract We examined effects of radionuclide exposure at two atomic blast sites on kangaroo rats (Dipodomys merriami) at the Nevada Test Site, Nevada, USA, using genotoxicity and population genetic analyses. We assessed chromosome damage by micronucleus and flow cytometric assays and genetic variation by randomly amplified polymorphic DNA (RAPD) and mitochondrial DNA (mtDNA) analyses. The RAPD analysis showed no population structure, but mtDNA exhibited differentiation among and within populations. Genotoxicity effects were not observed when all individuals were analyzed. However, individuals with mtDNA haplotypes unique to the contaminated sites had greater chromosomal damage than contaminated-site individuals with haplotypes shared with reference sites. When interpopulation comparisons used individuals with unique haplotypes, one contaminated site had greater levels of chromosome damage than one or both of the reference sites. We hypothesize that shared-haplotype individuals are potential migrants and that unique-haplotype individuals are potential long-term residents. A parsimony approach was used to estimate the minimum number of migration events necessary to explain the haplotype distributions on a phylogenetic tree. The observed predominance of migration events into the contaminated sites supported our migration hypothesis. We conclude the atomic blast sites are ecological sinks and that immigration masks the genotoxic effects of radiation on the resident populations. [source]


    Late Pleistocene and Early Holocene lake-level fluctuations in the Lahontan Basin, Nevada: Implications for the distribution of archaeological sites

    GEOARCHAEOLOGY: AN INTERNATIONAL JOURNAL, Issue 5 2008
    Kenneth D. Adams
    The Great Basin of the western U.S. contains a rich record of Late Pleistocene and Holocene lake-level fluctuations as well as an extensive record of human occupation during the same time frame. We compare spatial-temporal relationships between these records in the Lahontan basin to consider whether lake-level fluctuations across the Pleistocene-Holocene transition controlled distribution of archaeological sites. We use the reasonably well-dated archaeological record from caves and rockshelters as well as results from new pedestrian surveys to investigate this problem. Although lake levels probably reached maximum elevations of about 1230,1235 m in the different subbasins of Lahontan during the Younger Dryas (YD) period, the duration that the lakes occupied the highest levels was brief. Paleoindian and Early Archaic archaeological sites are concentrated on somewhat lower and slightly younger shorelines (_1220,1225 m) that also date from the Younger Dryas period. This study suggests that Paleoindians often concentrated their activities adjacent to large lakes and wetland resources soon after they first entered the Great Basin. © 2008 Wiley Periodicals, Inc. [source]


    Spring temperatures in the Sagehen Basin, Sierra Nevada, CA: implications for heat flow and groundwater circulation

    GEOFLUIDS (ELECTRONIC), Issue 3 2009
    MARIA BRUMM
    Abstract Heat flow in the Sierra Nevada, CA, is low despite its young geologic age. We investigate the possibility that advective heat transport by groundwater flow leads to an underestimate of heat flow in the Sierras based purely on borehole measurements. Using temperature and discharge measurements at springs in Sagehen Basin, we find that groundwater removes the equivalent of approximately 20,40 mW m,2 of geothermal heat from the basin. This is comparable with other heat flow measurements in the region and indicates that, in this basin, at least, groundwater does transport a significant amount of geothermal heat within the basin. Additionally, we use estimates of the mean residence time of water discharged at the springs along with hourly temperature records in springs to provide constraints on groundwater flow depths within the basin. An analytical model based on these constraints indicates that the heat removed by groundwater may represent 20% to >90% of the total heat flow in the basin. Without better constraints on the regional hydrogeology and the depth of circulation, we cannot determine whether the heat discharged at the springs represents a change in the mode of heat transfer, i.e. from conduction to advection at shallow depths (<100 m) or whether this is a component of heat transfer that should be added to measured conductive values. If the latter is true, and Sagehen Basin is representative of the Sierras, basal heat flow in the Sierra Nevada may be higher than previously thought. [source]


    Talus Instability in a Recent Deglaciation Area and Its Relationship to Buried Ice and Snow Cover Evolution (Picacho Del Veleta, Sierra Nevada, Spain)

    GEOGRAFISKA ANNALER SERIES A: PHYSICAL GEOGRAPHY, Issue 2 2003
    Antonio Gómez
    The southernmost glacier in Europe formed during the Little Ice Age at the foot of the north wall of Picacho del Veleta (3 398 m) in Sierra Nevada, in the southeast region of the Iberian Peninsula (lat. 37,03,N, long. 3,22,W). The glacier gradually retreated during the last century, leaving a large talus slope at the base of the wall. The unconsolidated material covering the ice masses acted as a thermal insulator. Recent bottom temperature of snow (BTS) analyses and drillings indicate that the ice still exists within the talus. Evidence from field observations made during the period 1995,2001, revealed that large mass movements occurred during the driest summers (1998 and especially, 1999 and 2000) when the talus was snow free. These conditions suggest a direct relationship between talus stability and thermal insulation from the snow cover in areas where buried ice or decaying marginal permafrost exists. [source]


    GREAT BASIN IMAGERY IN NEWSPAPER COVERAGE OF YUCCA MOUNTAIN§

    GEOGRAPHICAL REVIEW, Issue 4 2005
    SOREN C. LARSEN
    ABSTRACT. Place imagery in printed news is a vital but overlooked feature of the public debate regarding the disposal of the nation's nuclear waste in the proposed Yucca Mountain repository northwest of Las Vegas, Nevada. A content analysis of newspaper coverage reveals that participants use Great Basin imagery in the rhetorical strategies involved in making arguments for and against the site. This article identifies specific elements in the news-production process that privilege certain conceptualizations of the Great Basin over others, and it highlights alternative visions that have appeared in editorials, travel pieces, and commentaries. Taken together, the data and analysis suggest that journalistic sensitivity to value-laden imagery can result in more balanced and critical news accounts of public debate. [source]


    Studies on ,precarious rocks' in the epicentral area of the AD 1356 Basle earthquake, Switzerland

    GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 2 2005
    Peter Schürch
    SUMMARY For the first time precarious rocks have been analysed in the epicentral area of the AD 1356 Basle earthquake in northern Switzerland. Several cliff sites in flat-lying, thickly bedded Upper Jurassic coral limestones in the Jura Mountains were investigated. Seven blocks are regarded as precarious with respect to earthquake strong ground motions. The age of these precarious rocks could not be determined directly as for instance by radiometric dating methods; however, based on slope degradation processes it can be concluded that the formation of these blocks predates the AD 1356 Basle earthquake. The acceleration required to topple a precarious rock from its pedestal is estimated using geometrical data for individual block sections and earthquake strong-motion records from stations on rock sites in the European Strong-Motion Database as input data for the computer program ROCKING V1.0 from the Seismological Laboratory, University of Nevada, Reno. The calculations indicate that toppling of a precarious rock largely depends on earthquake strength but also on the frequency spectrum of the signal. Although most investigated precarious rocks are surprisingly stable for ground motions similar to those expected to have occurred during the AD 1356 Basle earthquake, at least two blocks are clearly precariously balanced, with peak toppling accelerations lower than 0.3 g. Possible reasons why these blocks did not topple during the AD 1356 Basle earthquake include incomplete separation from their base, sliding of precarious rocks, their size, lower than assumed ground accelerations and/or duration of shaking. [source]


    BARGEN continuous GPS data across the eastern Basin and Range province, and implications for fault system dynamics

    GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 3 2004
    Nathan A. Niemi
    SUMMARY We collected data from a transect of continuous Global Positioning System (GPS) sites across the eastern Basin and Range province at latitude 39°N from 1997,2000. Intersite velocities define a region ,350 km wide of broadly distributed strain accumulation at ,10 nstr yr,1. On the western margin of the region, site EGAN, ,10 km north of Ely, Nevada, moved at a rate of 3.9 ± 0.2 mm yr,1 to the west relative to site CAST, which is on the Colorado Plateau. Velocities of most sites to the west of Ely moved at an average rate of ,3 mm yr,1 relative to CAST, defining an area across central Nevada that does not appear to be extending significantly. The late Quaternary geological velocity field, derived using seismic reflection and neotectonic data, indicates a maximum velocity of EGAN with respect to the Colorado Plateau of ,4 mm yr,1, also distributed relatively evenly across the region. The geodetic and late Quaternary geological velocity fields, therefore, are consistent, but strain release on the Sevier Desert detachment and the Wasatch fault appears to have been anomalously high in the Holocene. Previous models suggesting horizontal displacement rates in the eastern Basin and Range near 3 mm yr,1, which focused mainly along the Wasatch zone and Intermountain seismic belt, may overestimate the Holocene Wasatch rate by at least 50 per cent and the Quaternary rate by nearly an order of magnitude, while ignoring potentially major seismogenic faults further to the west. [source]


    Range dynamics of small mammals along an elevational gradient over an 80-year interval

    GLOBAL CHANGE BIOLOGY, Issue 11 2010
    REBECCA J. ROWE
    Abstract One expected response to observed global warming is an upslope shift of species elevational ranges. Here, we document changes in the elevational distributions of the small mammals within the Ruby Mountains in northeastern Nevada over an 80-year interval. We quantified range shifts by comparing distributional records from recent comprehensive field surveys (2006,2008) to earlier surveys (1927,1929) conducted at identical and nearby locations. Collector field notes from the historical surveys provided detailed trapping records and locality information, and museum specimens enabled confirmation of species' identifications. To ensure that observed shifts in range did not result from sampling bias, we employed a binomial likelihood model (introduced here) using likelihood ratios to calculate confidence intervals around observed range limits. Climate data indicate increases in both precipitation and summer maximum temperature between sampling periods. Increases in winter minimum temperatures were only evident at mid to high elevations. Consistent with predictions of change associated with climate warming, we document upslope range shifts for only two mesic-adapted species. In contrast, no xeric-adapted species expanded their ranges upslope. Rather, they showed either static distributions over time or downslope contraction or expansion. We attribute these unexpected findings to widespread land-use driven habitat change at lower elevations. Failure to account for land-use induced changes in both baseline assessments and in predicting shifts in species distributions may provide misleading objectives for conservation policies and management practices. [source]


    Large annual net ecosystem CO2 uptake of a Mojave Desert ecosystem

    GLOBAL CHANGE BIOLOGY, Issue 7 2008
    GEORG WOHLFAHRT
    Abstract The net ecosystem CO2 exchange (NEE) between a Mojave Desert ecosystem and the atmosphere was measured over the course of 2 years at the Mojave Global Change Facility (MGCF, Nevada, USA) using the eddy covariance method. The investigated desert ecosystem was a sink for CO2, taking up 102±67 and 110±70 g C m,2 during 2005 and 2006, respectively. A comprehensive uncertainty analysis showed that most of the uncertainty of the inferred sink strength was due to the need to account for the effects of air density fluctuations on CO2 densities measured with an open-path infrared gas analyser. In order to keep this uncertainty within acceptable bounds, highest standards with regard to maintenance of instrumentation and flux measurement postprocessing have to be met. Most of the variability in half-hourly NEE was explained by the amount of incident photosynthetically active radiation (PAR). On a seasonal scale, PAR and soil water content were the most important determinants of NEE. Precipitation events resulted in an initial pulse of CO2 to the atmosphere, temporarily reducing NEE or even causing it to switch sign. During summer, when soil moisture was low, a lag of 3,4 days was observed before the correlation between NEE and precipitation switched from positive to negative, as opposed to conditions of high soil water availability in spring, when this transition occurred within the same day the rain took place. Our results indicate that desert ecosystem CO2 exchange may be playing a much larger role in global carbon cycling and in modulating atmospheric CO2 levels than previously assumed , especially since arid and semiarid biomes make up >30% of Earth's land surface. [source]


    Impact of land use and land cover change on groundwater recharge and quality in the southwestern US

    GLOBAL CHANGE BIOLOGY, Issue 10 2005
    Bridget R. Scanlon
    Abstract Humans have exerted large-scale changes on the terrestrial biosphere, primarily through agriculture; however, the impacts of such changes on the hydrologic cycle are poorly understood. The purpose of this study was to test the hypothesis that the conversion of natural rangeland ecosystems to agricultural ecosystems impacts the subsurface portion of the hydrologic cycle by changing groundwater recharge and flushing salts to underlying aquifers. The hypothesis was examined through point and areal studies investigating the effects of land use/land cover (LU/LC) changes on groundwater recharge and solute transport in the Amargosa Desert (AD) in Nevada and in the High Plains (HP) in Texas, US. Studies use the fact that matric (pore-water-pressure) potential and environmental-tracer profiles in thick unsaturated zones archive past changes in recharging fluxes. Results show that recharge is related to LU/LC as follows: discharge through evapotranspiration (i.e., no recharge; upward fluxes <0.1 mm yr,1) in natural rangeland ecosystems (low matric potentials; high chloride and nitrate concentrations); moderate-to-high recharge in irrigated agricultural ecosystems (high matric potentials; low-to-moderate chloride and nitrate concentrations) (AD recharge: ,130,640 mm yr,1); and moderate recharge in nonirrigated (dryland) agricultural ecosystems (high matric potentials; low chloride and nitrate concentrations, and increasing groundwater levels) (HP recharge: ,9,32 mm yr,1). Replacement of rangeland with agriculture changed flow directions from upward (discharge) to downward (recharge). Recent replacement of rangeland with irrigated ecosystems was documented through downward displacement of chloride and nitrate fronts. Thick unsaturated zones contain a reservoir of salts that are readily mobilized under increased recharge related to LU/LC changes, potentially degrading groundwater quality. Sustainable land use requires quantitative knowledge of the linkages between ecosystem change, recharge, and groundwater quality. [source]


    Patterns of ant species richness along elevational gradients in an arid ecosystem

    GLOBAL ECOLOGY, Issue 2 2003
    Nathan J. Sanders
    ABSTRACT Aim In this study, we examine patterns of local and regional ant species richness along three elevational gradients in an arid ecosystem. In addition, we test the hypothesis that changes in ant species richness with elevation are related to elevation-dependent changes in climate and available area. Location Spring Mountains, Nevada, U.S.A. Methods We used pitfall traps placed at each 100-m elevational band in three canyons in the Spring Mountains. We compiled climate data from 68 nearby weather stations. We used multiple regression analysis to examine the effects of annual precipitation, average July precipitation, and maximum and minimum July temperature on ant species richness at each elevational band. Results We found that patterns of local ant species richness differed among the three gradients we sampled. Ant species richness increased linearly with elevation along two transects and peaked at mid-elevation along a third transect. This suggests that patterns of species richness based on data from single transects may not generalize to larger spatial scales. Cluster analysis of community similarity revealed a high-elevation species assemblage largely distinct from that of lower elevations. Major changes in the identity of ant species present along elevational gradients tended to coincide with changes in the dominant vegetation. Regional species richness, defined here as the total number of unique species within an elevational band in all three gradients combined, tended to increase with increasing elevation. Available area decreased with increasing elevation. Area was therefore correlated negatively with ant species richness and did not explain elevational patterns of ant species richness in the Spring Mountains. Mean July maximum and minimum temperature, July precipitation and annual precipitation combined to explain 80% of the variation in ant species richness. Main conclusions Our results suggest that in arid ecosystems, species richness for some taxa may be highest at high elevations, where lower temperatures and higher precipitation may support higher levels of primary production and cause lower levels of physiological stress. [source]


    Using Temperature to Test Models of Flow Near Yucca Mountain, Nevada

    GROUND WATER, Issue 5 2003
    Scott Painter
    Ground water temperatures in the fractured volcanic aquifer near Yucca Mountain, Nevada, have previously been shown to have significant spatial variability with regions of elevated temperatures coinciding roughly with near-vertical north-south trending faults. Using insights gained from one-dimensional models, previous investigators have suggested upwelling along faults from an underlying aquifer as a likely explanation for this ground water temperature pattern. Using a three-dimensional coupled flow and heat-transport model, we show that the thermal high coinciding with the Paintbrush fault zone can be explained without significant upwelling from the underlying aquifer. Instead, the thermal anomaly is consistent with thermal conduction enhanced slightly by vertical ground water movement within the volcanic aquifer sequence. If more than -400 m3/day of water enters the volcanic aquifer from below along a 10 km fault zone, the calculated temperatures at the water table are significantly greater than the measured temperatures. These results illustrate the potential limitations in using one-dimensional models to interpret ground water temperature data, and underscore the value in combining temperature data with fully coupled three-dimensional simulations. [source]


    Effect of Heterogeneity on Radionuclide Retardation in the Alluvial Aquifer Near Yucca Mountain, Nevada

    GROUND WATER, Issue 3 2001
    S. Painter
    The U.S. Department of Energy is currently studying Yucca Mountain, Nevada, as a potential site for a geological high-level waste repository. In the current conceptual models of radionuclide transport at Yucca Mountain, part of the transport path to pumping locations would be through an alluvial aquifer. Interactions with minerals in the alluvium are expected to retard the downstream migration of radionuclides, thereby delaying arrival times and reducing ground water concentrations. We evaluate the effectiveness of the alluvial aquifer as a transport barrier using the stochastic Lagrangian framework. A transport model is developed to account for physical and chemical heterogeneities and rate-limited mass transfer between mobile and immobile zones. The latter process is caused by small-scale heterogeneity and is thought to control the macroscopic-scale retardation in some field experiments. A geostatistical model for the spatially varying sorption parameters is developed from a site-specific database created from hydrochemical measurements and a calibrated modeling approach (Turner and Pabalan 1999). Transport of neptunium is considered as an example. The results are sensitive to the rate of transfer between mobile and immobile zones, and to spatial variability in the hydraulic conductivity. Chemical heterogeneity has only a small effect, as does correlation between hydraulic conductivity and the neptunium distribution coefficient. These results illustrate how general sensitivities can be explored with modest effort within the Lagrangian framework. Such studies complement and guide the application of more detailed numerical simulations. [source]


    Regulation of Injected Ground Water Tracers

    GROUND WATER, Issue 4 2000
    Skelly A. Holmbeck-Pelham
    Ground water tracer tests are routinely performed to estimate aquifer flow and transport properties, including the determination of well capture zones, hydrogeologic parameters, and contaminant travel times. Investigators may be unaware of tracer test reporting requirements and may fail to notify their regulatory agency prior to conducting tracer tests. The injection of tracers falls under the jurisdiction of the federal Underground Injection Control (UIC) program, which regulates the introduction of substances into underground sources of drinking water as part of the Safe Drinking Water Act. The UIC program is administered by the U.S. Environmental Protection Agency (EPA) and by states with EPA-approved programs. The federal UIC program requires that tracer tests must not endanger underground sources of drinking water, and all tracer tests must be reported prior to injection. We contacted the UIC program administrator for every state in early 1997. Some states report having more stringent requirements, while some states do not meet minimum federal requirements. Although the primary responsibility for ground water tracer selection and use rests on the investigator, national guidance is required to assure compliance with the UIC program. To assist investigators, we present acceptable tracers that have been identified by two states, Nevada and South Carolina, that require no further regulatory review. [source]


    Seventh Americas Hepatopancreatobiliary Congress ANNUAL SCIENTIFIC SESSION & POST GRADUATE PROGRAM April 19,22, 2007 Bally's Hotel Las Vegas, Nevada

    HPB, Issue 2007
    Article first published online: 17 FEB 200
    First page of article [source]


    Using a fluctuating tracer to estimate hyporheic exchange in restored and unrestored reaches of the Truckee River, Nevada, USA

    HYDROLOGICAL PROCESSES, Issue 8 2009
    Andrew E. Knust
    Abstract The goal of this research was to compare hyporheic activity in recently restored and adjacent un-restored reaches of the Truckee River downstream from the Reno/Sparks metropolitan area. The installation of rocky riffles and raised channel bed elevations in the restored reaches may have increased the degree of surface,subsurface interaction. A fluctuating chloride concentration signal served as the tracer, induced by the variable influx of higher salinity water several miles upstream from the study reach. The solute transport model, OTIS, was used in conjunction with the hydrodynamic model, DYNHYD5, to estimate transient storage parameters under unsteady flow conditions. The model was calibrated to chloride concentrations measured over a period of three days at six in-stream locations representing restored and un-restored reaches. An automated parameter estimation algorithm (SCE-UA) was used to optimize parameters for multiple reaches simultaneously and generate a distribution of parameter estimates. Results suggest that the transient storage zone cross-sectional area (As) is larger in the restored reaches than in the unrestored reaches, but the exchange coefficient (,) is smaller, leading to increased hyporheic residence time and hydrologic retention in the vicinity of channel reconstructions. Scenarios were used to simulate the potential effects of increased subsurface residence time on denitrification and in-stream NO3 -N concentrations. Monte Carlo analysis was performed to assess uncertainty in the simulation results and show the potential for greater nutrient retention in the lower Truckee River as a result of channel restoration. Copyright © 2009 John Wiley & Sons, Ltd. [source]