Neutron Structures (neutron + structure)

Distribution by Scientific Domains


Selected Abstracts


X-ray and neutron structure of 1,8-(3,6,9-trioxaundecane-1,11-diyldioxy)-9,10-dihydro-10,10-dimethylanthracene-9-ol (P326); some pitfalls of automatic data collection

ACTA CRYSTALLOGRAPHICA SECTION B, Issue 3 2001
Rex A. Palmer
The structure of the crown ether 1,8-(3,6,9-trioxaundecane-1,11-diyldioxy)-9,10-dihydro-10,10-dimethylanthracene-9-ol, C24H30O6·H2O (1), code name P326, the parent compound for a series of derivatives, has been determined by both X-ray diffraction at room temperature and neutron diffraction at very low temperature. The unit cells are very similar at both temperatures and in both cases the crystals exhibit P21 symmetry with Z = 4 (two molecules, A and B, respectively, per asymmetric unit) and pseudosymmetry P21/c. The higher symmetry is broken mainly by the two independent water molecules in the unit cell, some reflections which would be absent in P21/c having strong intensities in both the X-ray and neutron data. In both molecules A and B hydrogen bonds involving the water molecule stabilize the macrocyclic ring structure, one involving the macrocyclic O(9) as a donor. Close contacts between the water and macrocyclic O atoms in each molecule also suggest the presence of two bifurcated hydrogen bonds, involving water HW2 to both O(16) and O(18), and water HW1 to both O(18) and O(20), respectively, with considerable variation in the geometry being present. Both molecules A and B exhibit very close pseudosymmetry across a plane perpendicular to the molecular plane and through atoms C(9) and O(18), and in addition are predominantly planar structures. The X-ray analysis failed to reveal one H atom per water molecule, each being subsequently included after location and refinement in the neutron analysis. [source]


Structures of furanosides: geometrical analysis of low-temperature X-ray and neutron crystal ­structures of five crystalline methyl ­pentofuranosides

ACTA CRYSTALLOGRAPHICA SECTION B, Issue 2 2001
Artem Evdokimov
Crystal structures of all five crystalline methyl d -pentofuranosides, methyl ,- d -arabinofuranoside (1), methyl ,- d -arabinofuranoside (2), methyl ,- d -lyxofuranoside (3), methyl ,- d -ribofuranoside (4) and methyl ,- d -xylofuranoside (5) have been determined by means of cryogenic X-ray and neutron crystallography. The neutron diffraction experiments provide accurate, unbiased H-atom positions which are especially important because of the critical role of hydrogen bonding in these systems. This paper summarizes the geometrical and conformational parameters of the structures of all five crystalline methyl pentofuranosides, several of them reported here for the first time. The methyl pentofuranoside structures are compared with the structures of the five crystalline methyl hexopyranosides for which accurate X-ray and neutron structures have been determined. Unlike the methyl hexopyranosides, which crystallize exclusively in the C1 chair conformation, the five crystalline methyl pentofuranosides represent a very wide range of ring conformations. [source]


X-ray structure of perdeuterated diisopropyl fluorophosphatase (DFPase): perdeuteration of proteins for neutron diffraction

ACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 4 2010
Marc-Michael Blum
The signal-to-noise ratio is one of the limiting factors in neutron macromolecular crystallography. Protein perdeuteration, which replaces all H atoms with deuterium, is a method of improving the signal-to-noise ratio of neutron crystallography experiments by reducing the incoherent scattering of the hydrogen isotope. Detailed analyses of perdeuterated and hydrogenated structures are necessary in order to evaluate the utility of perdeuterated crystals for neutron diffraction studies. The room-temperature X-ray structure of perdeuterated diisopropyl fluorophosphatase (DFPase) is reported at 2.1,Å resolution. Comparison with an independently refined hydrogenated room-temperature structure of DFPase revealed no major systematic differences, although the crystals of perdeuterated DFPase did not diffract neutrons. The lack of diffraction is examined with respect to data-collection and crystallographic parameters. The diffraction characteristics of successful neutron structure determinations are presented as a guideline for future neutron diffraction studies of macromolecules. X-ray diffraction to beyond 2.0,Å resolution appears to be a strong predictor of successful neutron structures. [source]


Engineering an improved crystal contact across a solvent-mediated interface of human fibroblast growth factor 1

ACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 11 2009
Akshaya K. Meher
Large-volume protein crystals are a prerequisite for neutron diffraction studies and their production represents a bottleneck in obtaining neutron structures. Many protein crystals that permit the collection of high-resolution X-ray diffraction data are inappropriate for neutron diffraction owing to a plate-type morphology that limits the crystal volume. Human fibroblast growth factor 1 crystallizes in a plate morphology that yields atomic resolution X-ray diffraction data but has insufficient volume for neutron diffraction. The thin physical dimension has been identified as corresponding to the b cell edge and the X-ray structure identified a solvent-mediated crystal contact adjacent to position Glu81 that was hypothesized to limit efficient crystal growth in this dimension. In this report, a series of mutations at this crystal contact designed to both reduce side-chain entropy and replace the solvent-mediated interface with direct side-chain contacts are reported. The results suggest that improved crystal growth is achieved upon the introduction of direct crystal contacts, while little improvement is observed with side-chain entropy-reducing mutations alone. [source]