Home About us Contact | |||
Neutral Microsatellites (neutral + microsatellite)
Selected AbstractsOpposites attract: MHC-associated mate choice in a polygynous primateJOURNAL OF EVOLUTIONARY BIOLOGY, Issue 1 2010J. M. SETCHELL Abstract We investigated reproduction in a semi-free-ranging population of a polygynous primate, the mandrill, in relation to genetic relatedness and male genetic characteristics, using neutral microsatellite and major histocompatibility complex (MHC) genotyping. We compared genetic dissimilarity to the mother and genetic characteristics of the sire with all other potential sires present at the conception of each offspring (193 offspring for microsatellite genetics, 180 for MHC). The probability that a given male sired increased as pedigree relatedness with the mother decreased, and overall genetic dissimilarity and MHC dissimilarity with the mother increased. Reproductive success also increased with male microsatellite heterozygosity and MHC diversity. These effects were apparent despite the strong influence of dominance rank on male reproductive success. The closed nature of our study population is comparable to human populations for which MHC-associated mate choice has been reported, suggesting that such mate choice may be especially important in relatively isolated populations with little migration to introduce genetic variation. [source] DOES MATE LIMITATION IN SELF-INCOMPATIBLE SPECIES PROMOTE THE EVOLUTION OF SELFING?EVOLUTION, Issue 6 2010THE CASE OF LEAVENWORTHIA ALABAMICA Genetic diversity at the S-locus controlling self-incompatibility (SI) is often high because of negative frequency-dependent selection. In species with highly patchy spatial distributions, genetic drift can overwhelm balancing selection and cause stochastic loss of S-alleles. Natural selection may favor the breakdown of SI in populations with few S-alleles because low S-allele diversity constrains the seed production of self-incompatible plants. We estimated S-allele diversity, effective population sizes, and migration rates in Leavenworthia alabamica, a self-incompatible mustard species restricted to discrete habitat patches in rocky glades. Patterns of polymorphism were investigated at the S-locus and 15 neutral microsatellites in three large and three small populations with 100-fold variation in glade size. Populations on larger glades maintained more S-alleles, but all populations were estimated to harbor at least 20 S-alleles, and mate availabilities typically exceeded 0.80, which is consistent with little mate limitation in nature. Estimates of the effective size (Ne) in each population ranged from 600 to 1600, and estimated rates of migration (m) ranged from 3 × 10,4 to nearly 1 × 10,3. According to theoretical models, there is limited opportunity for genetic drift to reduce S-allele diversity in populations with these attributes. Although pollinators or resources limit seed production in small glades, limited S-allele diversity does not appear to be a factor promoting the incipient breakdown of SI in populations of this species that were studied. [source] To see in different seas: spatial variation in the rhodopsin gene of the sand goby (Pomatoschistus minutus)MOLECULAR ECOLOGY, Issue 20 2009MAARTEN H. D. LARMUSEAU Abstract Aquatic organisms living in a range of photic environments require specific mechanisms to tune their visual pigments. Maximum absorbance (,max) of retinal rods in populations of the marine demersal sand goby, (Pomatoschistus minutus; Gobiidae, Teleostei) correlates with the local optic environment. It has been shown that this is not regulated through a physiological response by exchanging the rhodopsin chromophore. To test for evolutionary adaptation, the sequence of the rhodopsin (RH1) gene was analysed in 165 Pomatoschistus minutus individuals from seven populations across its distribution range. Analysis showed a high level of intraspecific polymorphism at the RH1 gene, including nonsynonymous mutations on amino acids, known as spectral tuning sites. Population differentiation at these sites was in agreement with the observed differentiation in ,max values. Analyses of dN/dS substitution rate ratios and likelihood ratio tests under site-specific models detected a significant signal of positive Darwinian selection on the RH1 gene. A strong discrepancy in differentiation was noticed between RH1 gene variation and the presumably neutral microsatellites and mitochondrial data. Samples did not cluster according to geographical or historical proximity with regards to RH1, but according to the general photic conditions of the habitat environment of the sand goby. This study highlights the usefulness of sensory genes, like rhodopsin, for studying the characteristics of local adaptation in marine nonmodel organisms. [source] Comparative analysis of the within-population genetic structure in wild cherry (Prunus avium L.) at the self-incompatibility locus and nuclear microsatellitesMOLECULAR ECOLOGY, Issue 11 2006SILVIO SCHUELER Abstract Gametophytic self-incompatibility (SI) systems in plants exhibit high polymorphism at the SI controlling S -locus because individuals with rare alleles have a higher probability to successfully pollinate other plants than individuals with more frequent alleles. This process, referred to as frequency-dependent selection, is expected to shape number, frequency distribution, and spatial distribution of self-incompatibility alleles in natural populations. We investigated the genetic diversity and the spatial genetic structure within a Prunus avium population at two contrasting gene loci: nuclear microsatellites and the S -locus. The S -locus revealed a higher diversity (15 alleles) than the eight microsatellites (4,12 alleles). Although the frequency distribution of S -alleles differed significantly from the expected equal distribution, the S -locus showed a higher evenness than the microsatellites (Shannon's evenness index for the S -locus: E = 0.91; for the microsatellites: E = 0.48,0.83). Also, highly significant deviations from neutrality were found for the S -locus whereas only minor deviations were found for two of eight microsatellites. A comparison of the frequency distribution of S -alleles in three age-cohorts revealed no significant differences, suggesting that different levels of selection acting on the S -locus or on S- linked sites might also affect the distribution and dynamics of S -alleles. Autocorrelation analysis revealed a weak but significant spatial genetic structure for the multilocus average of the microsatellites and for the S -locus, but could not ascertain differences in the extent of spatial genetic structure between these locus types. An indirect estimate of gene dispersal, which was obtained to explain this spatial genetic pattern, indicated high levels of gene dispersal within our population (,g = 106 m). This high gene dispersal, which may be partly due to the self-incompatibility system itself, aids the effective gene flow of the microsatellites, thereby decreasing the contrast between the neutral microsatellites and the S -locus. [source] |