Neutral Density Filter (neutral + density_filter)

Distribution by Scientific Domains


Selected Abstracts


83 Comparative analysis of vertically migrating euglena viridis populations in tidal and non-tidal benthic environments

JOURNAL OF PHYCOLOGY, Issue 2003
M.B. KingstonArticle first published online: 12 JAN 200
Benthic populations of Euglena viridis exhibit vertical migration behavior on high energy intertidal beaches and along the sand banks of freshwater streams. This study examines similarities and differences in the migratory behavior and cell morphology of populations of E. viridis inhabiting Scripps Beach, La Jolla, California and Coble Brook, Burlington, North Carolina. The timing of migration was measured by counting the number of cells in samples collected from the sediment surface throughout the day. Sediment cores were extracted and sectioned to determine the vertical distribution of the population. Neutral density filters and opaque canisters were used to shade the substratum to 56%, 22%, 2%, and 0% of incident irradiance (Io) to examine the effect of light on cell morphology and migratory behavior. On intertidal beaches, E. viridis exhibited a tidal rhythm in vertical migration with cells migrating below the sediment surface at night (>15 cm) and during daytime high tides. In this habitat, the upward migration response was enhanced at irradiances lower than 100% Io but cell morphology was not altered by shading. On the banks of freshwater streams, E. viridis exhibited a diurnal migratory rhythm with both tear-drop and spherical morphologies observed throughout the day. The population was most concentrated at the surface around solar noon and at night it was located between 1 and 2 cm below the surface. Shading did not enhance upward migration but it did affect cell morphology. These results will be interpreted in the context of the dominant selection pressures in each environment. [source]


Terahertz Time Domain Spectroscopy to Detect Low-Frequency Vibrations of Double-Walled Carbon Nanotubes

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 27 2010
Sunil Kumar
Abstract We have measured the frequency-dependent real index of refraction and extinction coefficient (and hence the complex dielectric function) of a free-standing double-walled carbon nanotube film of thickness 200 nm by using terahertz time domain spectroscopy in the frequency range 0.1 to 2.5 THz. The real index of refraction and extinction coefficient have very high values of approximately 52 and 35, respectively, at 0.1 THz, which decrease at higher frequencies. Two low-frequency phonon modes of the carbon nanotubes at 0.45 and 0.75 THz were clearly observed for the first time in the real and imaginary parts of the complex dielectric function along with a broad resonance centred at around 1.45 THz, the latter being similar to that in single-walled carbon nanotubes assigned to electronic excitations. Our experiments bring out a possible application of double-walled carbon nanotube films as a neutral density filter in the THz range. [source]


Usage of the Polyphenylene Oxide Dosimeter to Measure Annual Solar Erythemal Exposures

PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 3 2010
Peter W. Schouten
Poly (2, 6-dimethyl-1, 4-phenylene oxide) (PPO) film is a useful dosimetric tool for measuring solar UV in underwater and terrestrial environments. However, little is known about how the response of PPO changes with fluctuations in atmospheric ozone and also to seasonal variations. To resolve this issue this article presents a series of long-term in-air solar erythemal response measurements made over a year from 2007 to 2008 with PPO. This data showed that the PPO dose response varies with modulations of the solar spectrum resulting from changes in season and atmospheric ozone. From this, it was recommended that PPO only be calibrated in the season in which it is to be used at the same time as measurements were being made in the field. Extended solar UV measurements made by PPO with a neutral density filter (NDF) based on polyethylene are also detailed. These measurements showed that the lifetime of PPO could be extended by 5 days before saturation. As the dynamic range for PPO is known to be 5 days during summer at a sub-tropical location, the advantage of using the NDF is that half the number of dosimeters is needed to be fabricated and measured before and after exposure. [source]


Determination of UVA protection factors using the persistent pigment darkening (PPD) as the end point

PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE, Issue 6 2000
(Part 1) Calibration of the method
Background/Aims: The accuracy and reliability of any method to assess the UVA protection effectiveness of sunscreens needs to be demonstrated. The aim of the present study was to calibrate the effectiveness of a biological end point (Persistent Pigment Darkening, PPD) to assess UVA photoprotection. Methods: Persistent Pigment Darkening was selected as the end point because its action spectrum extends across the UVA. A broad UVA source was chosen to challenge all UVA wavelengths. Attenuation of UVA was performed with neutral density filters (equally absorbing at all wavelengths). Human subjects were tested with a series of UVA beams attenuated by the neutral density filters. The UVA protection effectiveness of a standard sunscreen was also tested with four panels of volunteers to assess the reproducibility of the method. Results: The attenuation factors of the neutral density filters were found to correspond to the UVA protection factors arrived at with PPD as the end point. The repetitive tests showed a good internal consistency of the method. Conclusions: The calibration procedure proposed shows threshold PPD, used as an end point in a UVA-PF test method, to be a reliable endogenous dosimeter for UVA radiation that enters the skin. [source]