Home About us Contact | |||
Neurotransmitter Systems (neurotransmitter + system)
Kinds of Neurotransmitter Systems Selected AbstractsThree-Dimensional Representation of the Neurotransmitter Systems of the Human Hypothalamus: Inputs of the Gonadotrophin Hormone-Releasing Hormone Neuronal SystemJOURNAL OF NEUROENDOCRINOLOGY, Issue 2 2006B. Dudas Abstract The gonadotrophin-releasing hormone (GnRH) represents the final common pathway of a neuronal network that integrates multiple external and internal factors to control fertility. Among the many inputs GnRH neurones receive, oestrogens play the most important role. In females, oestrogen, in addition to the negative feedback, also exhibits a positive feedback influence upon the activity and output of GnRH neurones to generate the preovulatory luteinising hormone surge and ovulation. Until recently, the belief has been that the GnRH neurones do not contain oestrogen receptors and that the action of oestrogen upon GnRH neurones is indirect, involving several, oestrogen-sensitive neurotransmitter and neuromodulator systems that trans -synaptically regulate the activity of the GnRH neurones. Although this concept still holds for humans, recent studies indicate that oestrogen receptor-beta is expressed in GnRH neurones of the rat. This review provides three dimensional stereoscopic images of GnRH-immunoreactive (IR) and some peptidergic (neuropeptide Y-, substance P-, ,-endorphin-, leu-enkaphalin-, corticotrophin hormone-releasing- and galanin-IR) and catecholaminergic neurones and the communication of these potential oestrogen-sensitive neuronal systems with GnRH neurones in the human hypothalamus. Because the post-mortem human tissue does not allow the electron microscopic identification of synapses on GnRH neurones, the data presented here are based on light microscopic immunocytochemical experiments using high magnification with oil immersion, semithin sections or confocal microscopy. [source] Genomic Influences on Schizophrenia-Related Neurotransmitter SystemsJOURNAL OF NURSING SCHOLARSHIP, Issue 4 2005Norman L. Keltner Purpose: (a) to summarize genomic influences in schizophrenia, (b) to review the molecular genetic profile associated with schizophrenia, (c) to summarize the genetic factors affecting dopamine and serotonin neurotransmitter systems, and (d) to list nursing implications for this knowledge. Organizing Framework: Schizophrenia and schizophrenia-spectrum disorders, both clustered in families, arise from both genetic and environmental influences. Schizophrenia does not develop from a single genetic mutation but rather from many genetic alterations acting together. Conclusions: Studies focused on genetic polymorphisms of neurotransmitter systems pique nurses' interest because pharmacological interventions affecting those systems remain the primary approach to treatment. Atypical antipsychotics have in common the ability to antagonize dopaminergic and serotonergic receptors. This review includes the recent discoveries regarding genetic modifications affecting dopamine and serotonin neurotransmitter systems and their potential as a basis for treatment. [source] Dopamine Interaction with other Neurotransmitter Systems: Relevance in the Pathophysiology and Treatment of CNS DisordersCNS: NEUROSCIENCE AND THERAPEUTICS, Issue 3 2010Giuseppe Di Giovanni No abstract is available for this article. [source] A decade of hypocretins: past, present and future of the neurobiology of arousalACTA PHYSIOLOGICA, Issue 3 2010L. De Lecea Abstract In 1998, two groups independently identified the hypocretins, also known as orexins, as two hypothalamic peptides derived from the same precursor expressed in a few thousand neurones restricted to the perifornical area. A decade later, an amazing set of discoveries has demonstrated a key role for this neurotransmitter system in arousal and beyond. Here I review some of the experiments that led to these discoveries and the implications in the neurobiology of the hypothalamus and our understanding of brain arousal. [source] Response of extracelluar zinc in the ventral hippocampus against novelty stressJOURNAL OF NEUROCHEMISTRY, Issue 2 2006Atsushi Takeda Abstract An extensive neuronal activity takes place in the hippocampus during exploratory behavior. However, the role of hippocampal zinc in exploratory behavior is poorly understood. To analyze the response of extracellular zinc in the hippocampus against novelty stress, rats were placed for 50 min in a novel environment once a day for 8 days. Extracellular glutamate in the hippocampus was increased during exploratory behavior on day 1, whereas extracellular zinc was decreased. The same phenomenon was observed during exploratory behavior on day 2 and extracellular zinc had returned to the basal level during exploratory behavior on day 8. To examine the significance of the decrease in extracellular zinc in exploratory activity, exploratory behavior was observed during perfusion with 1 mm CaEDTA, a membrane-impermeable zinc chelator. Locomotor activity in the novel environment was decreased by perfusion with CaEDTA. The decrease in extracellular zinc and the increase in extracellular glutamate in exploratory period were abolished by perfusion with CaEDTA. These results suggest that zinc uptake by hippocampal cells is linked to exploratory activity and is required for the activation of the glutamatergic neurotransmitter system. The zinc uptake may be involved in the response to painless psychological stress or in the cognitive processes. [source] Tiagabine in treatment refractory bipolar disorder: a clinical case seriesBIPOLAR DISORDERS, Issue 5 2002Trisha Suppes Objectives:, Anticonvulsants have provided major treatment advances for patients with bipolar disorder. Many of these drugs, including several with proven efficacy in bipolar mania or depression, enhance the activity of the ,-amino butyric acid (GABA) neurotransmitter system. A new anticonvulsant, tiagabine, has selective GABAergic activity and is approved for patients with partial epilepsy. Few reports of its potential effectiveness in bipolar disorder, however, have been published. We sought to evaluate the effectiveness of tiagabine added to ongoing medication regimens in patients with bipolar disorder inadequately responsive to or intolerant of usual treatments. Methods:, Seventeen treatment-refractory patients participating in the Stanley Foundation Bipolar Network (SFBN) long-term follow-up study were offered open treatment with add-on tiagabine after discussion of the risks, benefits, other treatment options and giving informed consent. Patients' clinical symptoms and somatic complaints were closely monitored with SFBN longitudinal and cross-sectional ratings. Four patients discontinued low-dose tiagabine prior to the second visit and were excluded from data analysis. Results:, Thirteen patients received a mean of 38 days of treatment at a mean dose of 8.7 mg/day of tiagabine. On the Clinical Global Impression Scale for Bipolar Disorder Overall category, three (23%) patients showed much or very much improvement and 10 (77%) patients showed no change or worsening. Three significant adverse events were noted, including two presumptive seizures. Conclusions:, Open add-on tiagabine for treatment-refractory patients with bipolar disorder demonstrated limited efficacy with the majority of patients showing no change or worsening of clinical symptoms. In addition, patients experienced serious side-effects attributed as likely due to the medication, which resolved without lasting consequence when tiagabine was discontinued. [source] Schizophrenia; from structure to function with special focus on the mediodorsal thalamic prefrontal loopACTA PSYCHIATRICA SCANDINAVICA, Issue 5 2009B. Pakkenberg Objective:, To describe structural and biochemical evidence from postmortem brains that implicates the reciprocal connections between the mediodorsal thalamic nucleus and the prefrontal cortex in cognitive symptoms of schizophrenia. Method:, The estimation of the regional volumes and cell numbers was obtained using stereological methods. The biochemical analyses of molecular expression in postmortem brain involve quantitative measurement of transcripts and proteins by in-situ (RNA) or Western blot/autoradiography in brains from patients with schizophrenia and comparison subjects. Results:, Stereological studies in postmortem brain from patients with schizophrenia have reported divergent and often opposing findings in the total number of neurons and volume of the mediodorsal (MD) thalamic nucleus, and to a lesser degree in its reciprocally associated areas of the prefrontal cortex. Similarly, quantitative molecular postmortem studies have found large inter-subject and between-study variance at both the transcript and protein levels for receptors and their interacting molecules of several neurotransmitter systems in these interconnected anatomical regions. Combined, large variation in stereological and molecular studies indicates a complex and heterogeneous involvement of the MD thalamic-prefrontal loop in schizophrenia. Conclusion:, Based on a considerable heterogeneity in patients suffering from schizophrenia, large variation in postmortem studies, including stereological and molecular postmortem studies of the MD thalamus and frontal cortex, might be expected and may in fact partly help to explain the variable endophenotypic traits associated with this severe psychiatric illness. [source] Presynaptic diadenosine polyphosphate receptors: Interaction with other neurotransmitter systemsDRUG DEVELOPMENT RESEARCH, Issue 1-2 2001M. Teresa Miras-Portugal Abstract Diadenosine polyphosphates (ApnA n = 2,6) are natural compounds that can play a neurotransmitter role in the synaptic terminals of the central nervous system. Microfluorimetric studies of [Ca2+]i in single synaptic terminals have shown the presence of specific ionotropic receptors for nucleotides and dinucleotides. These dinucleotide receptors may or may not coexist at the same terminal. Aminergic terminals from rat basal ganglia have been immunologically characterised by the presence of the vesicular monoamine transporter 2 after the functional studies. Fifty-eight percent of these terminals respond to nucleotides, and of these, 17% respond only to Ap5A. Cholinergic terminals from rat midbrain were immunologically characterised by the vesicular acetylcholine transporter. Sixty-three percent of these terminals responded to nucleotides, and of these, 22% responded only to Ap5A. The presynaptic ionotropic dinucleotide receptors can coexist not only with the ATP receptors, but also with various subtypes of nicotinic receptors. GABAergic terminals from rat midbrain were immunologically characterised by the vesicular inhibitory amino acid transporter. Fifty-nine percent of these terminals responded to nucleotides, and of these, 17% responded only to Ap5A. The presynaptic dinucleotide receptors, when stimulated, are able to induce the GABA release from synaptosomal preparations. These data clearly show the broad interaction of nucleotides and dinucleotides with other neurotransmitter systems. Drug Dev. Res. 52:239,248, 2001. © 2001 Wiley-Liss, Inc. [source] Anabolic,androgenic steroid dependence: an emerging disorderADDICTION, Issue 12 2009Gen Kanayama ABSTRACT Aims Anabolic,androgenic steroids (AAS) are widely used illicitly to gain muscle and lose body fat. Here we review the accumulating human and animal evidence showing that AAS may cause a distinct dependence syndrome, often associated with adverse psychiatric and medical effects. Method We present an illustrative case of AAS dependence, followed by a summary of the human and animal literature on this topic, based on publications known to us or obtained by searching the PubMed database. Results About 30% of AAS users appear to develop a dependence syndrome, characterized by chronic AAS use despite adverse effects on physical, psychosocial or occupational functioning. AAS dependence shares many features with classical drug dependence. For example, hamsters will self-administer AAS, even to the point of death, and both humans and animals exhibit a well-documented AAS withdrawal syndrome, mediated by neuroendocrine and cortical neurotransmitter systems. AAS dependence may particularly involve opioidergic mechanisms. However, AAS differ from classical drugs in that they produce little immediate reward of acute intoxication, but instead a delayed effect of muscle gains. Thus standard diagnostic criteria for substance dependence, usually crafted for acutely intoxicating drugs, must be adapted slightly for cumulatively acting drugs such as AAS. Conclusions AAS dependence is a valid diagnostic entity, and probably a growing public health problem. AAS dependence may share brain mechanisms with other forms of substance dependence, especially opioid dependence. Future studies are needed to characterize AAS dependence more clearly, identify risk factors for this syndrome and develop treatment strategies. [source] Candidate genes for cannabis use disorders: findings, challenges and directionsADDICTION, Issue 4 2009Arpana Agrawal ABSTRACT Aim Twin studies have shown that cannabis use disorders (abuse/dependence) are highly heritable. This review aims to: (i) review existing linkage studies of cannabis use disorders and (ii) review gene association studies, to identify potential candidate genes, including those that have been tested for composite substance use disorders and (iii) to highlight challenges in the genomic study of cannabis use disorders. Methods Peer-reviewed linkage and candidate gene association studies are reviewed. Results Four linkage studies are reviewed: results from these have homed in on regions on chromosomes 1, 3, 4, 9, 14, 17 and 18, which harbor candidates of predicted biological relevance, such as monoglyceride lipase (MGLL) on chromosome 3, but also novel genes, including ELTD1[epidermal growth factor (EGF), latrophilin and seven transmembrane domain containing 1] on chromosome 1. Gene association studies are presented for (a) genes posited to have specific influences on cannabis use disorders: CNR1, CB2, FAAH, MGLL, TRPV1 and GPR55 and (b) genes from various neurotransmitter systems that are likely to exert a non-specific influence on risk of cannabis use disorders, e.g. GABRA2, DRD2 and OPRM1. Conclusions There are challenges associated with (i) understanding biological complexity underlying cannabis use disorders (including the need to study gene,gene and gene,environment interactions), (ii) using diagnostic versus quantitative phenotypes, (iii) delineating which stage of cannabis involvement (e.g. use versus misuse) genes influence and (iv) problems of sample ascertainment. [source] Corticolimbic dysregulation and chronic methamphetamine abuseADDICTION, Issue 2007Kate Baicy ABSTRACT Aims This review aims to present and interpret evidence that methamphetamine dependence is associated with disorder of brain function that is required for top-down control of behavior. Approach Presented here are findings from brain imaging studies of human research participants with histories of chronic methamphetamine abuse in the context of functional consequences and implications for treatment of their dependence on methamphetamine. Findings Brain imaging studies have revealed differences in the brains of research participants who have used methamphetamine chronically and then abstained from taking the drug, compared with healthy control subjects. These abnormalities are prominent in cortical and limbic systems, and include deficits in markers of dopaminergic and serotonergic neurotransmitter systems, differences in glucose metabolism and deficits in gray matter. These abnormalities accompany cognitive deficits, including evidence of impaired inhibitory control. Conclusion Cortical deficits in abstinent methamphetamine abusers can affect a wide range of functions that can be important for success in maintaining drug abstinence. These include but are not limited to modulation of responses to environmental stimuli as well as internal triggers that can lead to craving and relapse. Potential therapies may combine behavioral approaches with medications that can improve cognitive control. [source] RESEARCH FOCUS ON COMPULSIVE BEHAVIOUR IN ANIMALS: Compulsive alcohol drinking in rodentsADDICTION BIOLOGY, Issue 4 2009Valentina Vengeliene ABSTRACT Upon prolonged alcohol exposure, the behaviour of an individual can gradually switch from controlled to compulsive. Our review is focused on the neurobiological mechanisms that might underlie this transition as well as the factors that are influencing it. Animal studies suggest that temporally increased alcohol consumption during post-abstinence drinking is accompanied by a loss of flexibility of the behaviour and therefore, could serve as a model for compulsive alcohol drinking. However, studies using different alcohol-preferring rat lines in the post-abstinence drinking model suggest that high alcohol consumption does not necessarily lead to the development of compulsive drinking. This indicates the significance of genetic predisposition to compulsive behaviour. Neuroimaging data show that chronic alcohol consumption affects the activity of several brain regions such as the extrapyramidal motor system and several areas of the prefrontal cortex including the orbitofrontal and anterior cingulate cortex. Similar changes in brain activity is seen in patients suffering from obsessive,compulsive disorder at baseline conditions and during provocation of obsessive thoughts and urge to perform compulsive-like rituals. This indicates that dysfunction of these regions may be responsible for the expression of compulsive components of alcohol drinking behaviour. Several brain neurotransmitter systems seem to be responsible for the switch from controlled to compulsive behaviour. In particular, hypofunctioning of monoaminergic systems and hyperfunctioning of glutamatergic systems may play a role in compulsive alcohol drinking. [source] PRECLINICAL STUDY: The effect of naltrexone on amphetamine-induced conditioned place preference and locomotor behaviour in the ratADDICTION BIOLOGY, Issue 3 2009Jenny Häggkvist ABSTRACT Whereas amphetamine and other psychostimulants primarily act on the dopamine system, there is also evidence that other neurotransmitter systems, such as the endogenous opioid system, modulate psychostimulant-induced effects. Several studies have investigated the role of opioid antagonists on cocaine-induced conditioned place preference (CPP), but there is limited information about the interaction with amphetamines. The aim of the present study was to investigate the effect of the opioid receptor antagonist, naltrexone (NTX) on the conditioning, expression and reinstatement of amphetamine-induced place preference. In addition, the effect of NTX on locomotor behaviour was measured during all sessions. During training, animals were conditioned with amphetamine (2 mg/kg) to induce place preference. In order to extinguish the conditioned behaviour, animals received saline for 12 days. Reinstatement of CPP was induced by a priming dose of amphetamine (0.5 mg/kg). The interaction of NTX and amphetamine was evaluated using three paradigms of CPP: with NTX (vehicle, 0.3, 1.0 and 3.0 mg/kg) administered either 30 minutes prior to amphetamine conditioning, or 30 minutes before the expression, or 30 minutes before the amphetamine priming to induce reinstatement. Naltrexone had no effect on the conditioning, the expression or the reinstatement induced by a priming dose of amphetamine. Further, NTX by itself did not induce place preference or place aversion. In contrast, NTX significantly attenuated the locomotor response to a priming dose of amphetamine without affecting general locomotor behaviour. The results suggest differences in opioid modulation of amphetamine-induced behaviours in the rat. [source] REVIEW: Alcohol-related genes: contributions from studies with genetically engineered miceADDICTION BIOLOGY, Issue 3-4 2006John C. Crabbe ABSTRACT Since 1996, nearly 100 genes have been studied for their effects related to ethanol in mice using genetic modifications including gene deletion, gene overexpression, gene knock-in, and occasionally by studying existing mutants. Nearly all such studies have concentrated on genes expressed in brain, and the targeted genes range widely in their function, including most of the principal neurotransmitter systems, several neurohormones, and a number of signaling molecules. We review 141 published reports of effects (or lack thereof) of 93 genes on responses to ethanol. While most studies have focused on ethanol self-administration and reward, and/or sedative effects, other responses studied include locomotor stimulation, anxiolytic effects, and neuroadaptation (tolerance, sensitization, withdrawal). About 1/4 of the engineered mutations increase self-administration, 1/3 decrease it, and about 40% have no significant effect. In many cases, the effects on self-administration are rather modest and/or depend on the specific experimental procedures. In some cases, genes in the background strains on which the mutant is placed are important for results. Not surprisingly, review of the systems affected further supports roles for serotonin, ,-aminobutyric acid, opioids and dopamine, all of which have long been foci of alcohol research. Novel modulatory effects of protein kinase C and G protein-activated inwardly rectifying K+ (GIRK) channels are also suggested. Some newer research with cannabinoid systems is promising, and has led to ongoing clinical trials. [source] Selective chronic stress-induced in vivo ERK1/2 hyperphosphorylation in medial prefrontocortical dendrites: implications for stress-related cortical pathology?EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 10 2002A. Trentani Abstract Stress has been shown to affect brain structural plasticity, promote long-term changes in multiple neurotransmitter systems and cause neuronal atrophy. However, the mechanisms involved in these stress-related neural alterations are still poorly understood. Mitogen-activated protein kinase (MAPK) cascades play a crucial role in the transduction of neurotrophic signal from the cell surface to the nucleus and are implicated in the modulation of synaptic plasticity and neuronal survival. An intriguing possibility is that stress might influence brain plasticity through its effects on selective members of such intracellular signalling cascades responsible for the transduction of neurotrophin signals. Here, we have investigated the effects of stress on the expression of three members of the MAPK/extracellular-regulated kinase (ERK) pathway such as phospho-ERK1, phospho-ERK2 and phospho-cAMP/calcium-responsive element-binding protein (CREB) in the adult rat brain. Male rats were subjected to mild footshocks and the patterns of protein expression were analysed after 21 consecutive days of stress. We found that chronic stress induced a pronounced and persistent ERK1/2 hyperphosphorylation in dendrites of the higher prefrontocortical layers (II and III) and a reduction of phospho-CREB expression in several cortical and subcortical regions. We hypothesized that defects in ERK signalling regulation combined with a reduced phospho-CREB activity may be a crucial mechanism by which sustained stress may induce atrophy of selective subpopulations of vulnerable cortical neurons and/or distal dendrites. Thus, ERK-mediated cortical abnormalities may represent a specific path by which chronic stress affects the functioning of cortical structures and causes selective neural network defects. [source] Dopaminergic and non-dopaminergic pharmacological hypotheses for gait disorders in Parkinson's diseaseFUNDAMENTAL & CLINICAL PHARMACOLOGY, Issue 4 2010David Devos Abstract Gait disorders form one component of the axial disorders observed in Parkinson's disease (PD). Indeed, short steps with a forward-leaning stance are diagnostic criteria for PD in the early stages of the condition. Gait disorders also represent a major source of therapeutic failure in the advanced stages of PD (with the appearance of freezing of gait and falls) because they do not respond optimally to the two hand late-stage therapeutics , levodopa and electrical subthalamic nucleus (STN) stimulation. The late onset of doparesistance in these disorders may be linked to propagation of neurodegeneration to structures directly involved in gait control and to non-dopaminergic neurotransmitter systems. The coeruleus locus (a source of noradrenaline) is rapidly and severely affected, leading to a major motor impact. The pedunculopontine nucleus (PPN) and lateral pontine tegmentum (rich in acetylcholine) are both involved in gait. Degenerative damage to the serotoninergic raphe nuclei appears to be less severe, although serotonin-dopamine interactions are numerous and complex. Lastly, dopaminergic depletion leads to glutamatergic hyperactivity of the efferent pathways from the the STN to the PPN. However, the relationships between the various parkinsonian symptoms (and particularly gait disorders) and these pharmacological targets have yet to be fully elucidated. The goal of this review is to develop the various pathophysiological hypotheses published to date, in order to underpin and justify ongoing fundamental research and clinical trials in this disease area. [source] Candidate genes for panic disorder: insight from human and mouse genetic studiesGENES, BRAIN AND BEHAVIOR, Issue 2007M. Gratacòs Panic disorder is a major cause of medical attention with substantial social and health service cost. Based on pharmacological studies, research on its etiopathogenesis has been focused on the possible dysfunction of specific neurotransmitter systems. However, recent work has related the genes involved in development, synaptic plasticity and synaptic remodeling to anxiety disorders. This implies that learning processes and changes in perception, interpretation and behavioral responses to environmental stimuli are essential for development of complex anxiety responses secondary to the building of specific brain neural circuits and to adult plasticity. The focus of this review is on progress achieved in identifying genes that confer increased risk for panic disorder through genetic epidemiology and the use of genetically modified mouse models. The integration of human and animal studies targeting behavioral, systems-level, cellular and molecular levels will most probably help identify new molecules with potential impact on the pathogenetic aspects of the disease. [source] Dissociation of food and opiate preference by a genetic mutation in zebrafishGENES, BRAIN AND BEHAVIOR, Issue 7 2006B. Lau Both natural rewards and addictive substances have the ability to reinforce behaviors. It has been unclear whether identical neural pathways mediate the actions of both. In addition, little is known about these behaviors and the underlying neural mechanisms in a genetically tractable vertebrate, the zebrafish Danio rerio. Using a conditioned place preference paradigm, we demonstrate that wildtype zebrafish exhibit a robust preference for food as well as the opiate drug morphine that can be blocked by the opioid receptor antagonist naloxone. Moreover, we show that the too few mutant, which disrupts a conserved zinc finger-containing gene and exhibits a reduction of selective groups of dopaminergic and serotonergic neurons in the basal diencephalon, displays normal food preference but shows no preference for morphine. Pretreatment with dopamine receptor antagonists abolishes morphine preference in the wildtype. These studies demonstrate that zebrafish display measurable preference behavior for reward and show that the preference for natural reward and addictive drug is dissociable by a single-gene mutation that alters subregions of brain monoamine neurotransmitter systems. Future genetic analysis in zebrafish shall uncover further molecular and cellular mechanisms underlying the formation and function of neural circuitry that regulate opiate and food preference behavior. [source] Neurochemistry of Trigeminal Activation in an Animal Model of MigraineHEADACHE, Issue 2006Michael L. Oshinsky PhD Research techniques such as electrophysiology, cFos protein expression, and other measurements of neuronal activation provide insights into the pathophysiology of pain processing in migraine, but they do not indicate the specific neurotransmitter systems involved. This paper summarizes data from microdialysis experiments in which changes in the neurochemistry of the trigeminal nucleus caudalis (TNC) were monitored during dural stimulation. Microdialysis allows the measurement of extracellular concentrations of neurotransmitters in a small area of the brain, in vivo, by means of a probe equipped with a semipermeable membrane. Microdialysis enables direct measurement of changes in extracellular concentrations of neurotransmitters in the intact animal over time in response to dural inflammation. Following the activation of the dural nociceptors, changes in the extracellular amino acid neurotransmitters in the deep lamina of the TNC were tracked. A 5-minute application of inflammatory soup when compared with saline to the dura of rats induced a transient decrease in extracellular glutamate in the TNC at approximately 30 minutes postapplication. This short-lived decrease was followed by a continuous increase in extracellular glutamate to a level of approximately 3 times the baseline value at 3 hours after application of the inflammatory soup. The time course of this increase in extracellular glutamate correlated with changes in sensory thresholds on the face of the rat from electrophysiological recordings of secondary sensory neurons in the TNC. No significant differences between the inflammatory soup and saline conditions were observed for extracellular concentrations of aspartate (an excitatory amino acid) or the inhibitory neurotransmitters gamma-aminobutyric acid or glutamine. Results of these experiments support an integral role for glutamate in central sensitization of neurons in the TNC, and suggest an important contribution of glutamate to allodynia and hyperalgia in this animal model of migraine. [source] Tolerability and safety of fluvoxamine and other antidepressantsINTERNATIONAL JOURNAL OF CLINICAL PRACTICE, Issue 4 2006H. G. M. Westenberg Summary Selective serotonin [5-hydroxytryptamine (5-HT)] reuptake inhibitors (SSRIs) and the 5-HT noradrenaline reuptake inhibitor, venlafaxine, are mainstays in treatment for depression. The highly specific actions of SSRIs of enhancing serotonergic neurotransmission appears to explain their benefit, while lack of direct actions on other neurotransmitter systems is responsible for their superior safety profile compared with tricyclic antidepressants. Although SSRIs (and venlafaxine) have similar adverse effects, certain differences are emerging. Fluvoxamine may have fewer effects on sexual dysfunction and sleep pattern. SSRIs have a cardiovascular safety profile superior to that of tricyclic antidepressants for patients with cardiovascular disease; fluvoxamine is safe in patients with cardiovascular disease and in the elderly. A discontinuation syndrome may develop upon abrupt SSRI cessation. SSRIs are more tolerable than tricyclic antidepressants in overdose, and there is no conclusive evidence to suggest that they are associated with an increased risk of suicide. Although the literature suggests that there are no clinically significant differences in efficacy amongst SSRIs, treatment decisions need to be based on considerations such as patient acceptability, response history and toxicity. [source] Multifunctional drugs with different CNS targets for neuropsychiatric disordersJOURNAL OF NEUROCHEMISTRY, Issue 4 2006Cornelis J. Van der Schyf Abstract The multiple disease etiologies that lead to neuropsychiatric disorders, such as Parkinson's and Alzheimer's disease, amyotrophic lateral sclerosis, Huntington disease, schizophrenia, depressive illness and stroke, offer significant challenges to drug discovery efforts aimed at preventing or even reversing the progression of these disorders. Transcriptomic tools and proteomic profiling have clearly indicated that such diseases are multifactorial in origin. Further, they are thought to be initiated by a cascade of molecular events that involve several neurotransmitter systems. In response to this complexity, a new paradigm has recently emerged that challenges the widely held assumption that ,silver bullet' agents are superior to ,dirty drugs' in therapeutic approaches aimed at the prevention or treatment of neuropsychiatric diseases. A similar pattern of drug development has occurred in strategies for the treatment of cancer, AIDS and cardiovascular diseases. In this review, we offer an overview of therapeutic strategies and novel investigative drugs discovered or developed in our own and other laboratories, that address multiple CNS etiological targets associated with an array of neuropsychiatric disorders. [source] Temperature Influences the Ontogenetic Expression of Aromatase and Oestrogen Receptor mRNA in the Developing Tilapia (Oreochromis mossambicus) BrainJOURNAL OF NEUROENDOCRINOLOGY, Issue 1 2003C. -L. Abstract Water temperature has a differential influence on the development of central neurotransmitter systems according to the developmental period in tilapia (Oreochromis mossambicus). Aromatase and oestrogen receptors (ERs) represent important components of the mechanism of brain differentiation. Gene expression of aromatase and ERs is modulated by neurotransmitters in the developing brain. In the present study, the quantitative reverse transcription-polymerase chain reaction method was used to investigate the effects of temperature on the ontogenetic expression of aromatase and ERs in the developing tilapia brain. Before day 10 posthatching, exposure to a higher temperature (32 °C) resulted in a significant increase in the expression of brain aromatase; conversely, a lower temperature (20 °C) resulted in a decrease. ER, expression was depressed in accordance with the decrease of temperature, but ER, was unaffected by temperature. Between days 10 and 20, neither brain aromatase nor ER, expression was altered by temperature, whereas ER, expression was significantly enhanced by exposure to 32 °C. Between days 20 and 30, brain aromatase significantly increased at the higher temperature and decreased at 20 °C, but neither ER, nor ER, was affected by temperature. The expression of both brain aromatase and ERs, differentially regulated according to the temperature and to the developmental period, could be related to brain,sex differentiation. [source] Neural Circuits Regulating Pulsatile Luteinizing Hormone Release in the Female Guinea-Pig: Opioid, Adrenergic and Serotonergic InteractionsJOURNAL OF NEUROENDOCRINOLOGY, Issue 3 2001A. C. Gore Abstract We studied three neurotransmitters involved in the regulation of pulsatile luteinizing hormone (LH) release: opioid peptides, serotonin and norepinephrine, using the ovariectomized guinea-pig. This is an attractive animal model due to the regularity of its LH pulses, enabling any disruptions to be clearly ascertained. In all experiments, a specific agonist or antagonist was administered, either alone or serially to enable detection of interactions, and effects on mean LH concentrations, pulse amplitude and interpulse interval were determined by PULSAR analysis. In the ovariectomized guinea-pig, catecholamines are stimulatory (acting through the ,1 and ,2 but not , receptors, unlike other species), opioids inhibitory and serotonin permissively stimulatory to pulsatile LH release. Stimulatory effects of the opiate antagonist were not blocked by pretreatment with an ,1 - or ,2 -adrenergic antagonist. Similarly, pretreatment with the opiate antagonist did not prevent the suppression of LH release by ,1 and ,2 antagonists. This suggests that, in the guinea-pig, effects of opiates and catecholamines on LH release are exerted by independent pathways to luteinizing hormone releasing hormone (LHRH) neurones. For the opiate,serotonin interactions, pretreatment with the serotonergic antagonist did not block the stimulatory effect of the opiate antagonist on LH release. However, pretreatment with the opiate agonist could not be overcome by the serotonergic agonist. This suggests that the effects of the serotonin system on LHRH release may be indirectly mediated by opioid neurones. Taken together, these studies demonstrate that the three neurotransmitter systems studied are critically involved in normal pulsatile LH release in the female guinea-pig, and demonstrate novel functional relationships between the opioid and the adrenergic and serotonergic systems. [source] Blockade of NMDA receptors and nitric oxide synthesis in the dorsolateral periaqueductal gray attenuates behavioral and cellular responses of rats exposed to a live predatorJOURNAL OF NEUROSCIENCE RESEARCH, Issue 11 2009Daniele Cristina Aguiar Abstract Innate fear stimulus induces activation of neurons containing the neuronal nitric oxide synthase enzyme (nNOS) in defensive-related brain regions such as the dorsolateral periaqueductal gray (dlPAG). Intra-dlPAG administration of nitric oxide synthase (NOS) inhibitors and glutamate antagonists induce anxiolytic-like responses. We investigated the involvement of nitric oxide (NO) and glutamate neurotransmission in defensive reactions modulated by dlPAG. We tested if intra-dlPAG injections of the selective nNOS inhibitor, N-propyl- L -arginine (NP), or the glutamate antagonist, AP7 (2-amino-7-phosphonoheptanoic acid), would attenuate behavioral responses and cellular activation induced by predator exposure (cat). Fos-like immunoreactivity (FLI) was used as a marker of neuronal functional activation, whereas nNOS immunohistochemistry was used to identify NOS neurons. Cat exposure induced fear responses and an increase of FLI in the dlPAG and dorsal premammillary nucleus (PMd). NP and AP7 attenuated the cat-induced behavioral responses. Whereas NP tended to attenuate FLI in the dlPAG, AP7 induced a significant reduction in cellular activation of this region. The latter drug, however, increased FLI and double-labeled cells in the PMd. Cellular activation of this region was significantly correlated with time spent near the cat (r = 0.7597 and 0.6057 for FLI and double-labeled cells). These results suggest that glutamate/NO-mediated neurotransmission in the dlPAG plays an important role in responses elicit by predator exposure. Blocking these neurotransmitter systems in this brain area impairs defensive responses. The longer time spent near the predator that follows AP7 effect could lead to an increased cellular activation of the PMd, a more rostral brain area that has also been related to defensive responses. © 2009 Wiley-Liss, Inc. [source] Genomic Influences on Schizophrenia-Related Neurotransmitter SystemsJOURNAL OF NURSING SCHOLARSHIP, Issue 4 2005Norman L. Keltner Purpose: (a) to summarize genomic influences in schizophrenia, (b) to review the molecular genetic profile associated with schizophrenia, (c) to summarize the genetic factors affecting dopamine and serotonin neurotransmitter systems, and (d) to list nursing implications for this knowledge. Organizing Framework: Schizophrenia and schizophrenia-spectrum disorders, both clustered in families, arise from both genetic and environmental influences. Schizophrenia does not develop from a single genetic mutation but rather from many genetic alterations acting together. Conclusions: Studies focused on genetic polymorphisms of neurotransmitter systems pique nurses' interest because pharmacological interventions affecting those systems remain the primary approach to treatment. Atypical antipsychotics have in common the ability to antagonize dopaminergic and serotonergic receptors. This review includes the recent discoveries regarding genetic modifications affecting dopamine and serotonin neurotransmitter systems and their potential as a basis for treatment. [source] Altered Motor Cortex Excitability to Magnetic Stimulation in Alcohol Withdrawal SyndromeALCOHOLISM, Issue 4 2010Raffaele Nardone Background:, Alcohol addiction is a complex brain disease caused by alterations in crucial neurotransmitter systems, including gamma-aminobutyric acid (GABA) and glutamate. These disturbances could be revealed by changes in cortical excitability parameters, as assessed by transcranial magnetic stimulation (TMS). This study was aimed to further investigate the complex pathophysiology of alcohol withdrawal syndrome (AWS). Methods:, Motor cortex excitability was examined in 13 subjects with AWS in a mild predelirial state, in 12 chronic alcoholics and in 15 age-matched control subjects, using a range of TMS protocols. Central motor conduction time, resting and active motor threshold, duration of the cortical silent period, short latency intracortical inhibition (SICI), and intracortical facilitation (ICF) to paired TMS were examined. Results:, Intracortical facilitation was significantly increased in the AWS patients when compared with the chronic alcoholics and the control subjects. The other TMS parameters did not differ significantly from the controls. Administration of a single oral dose of the glutamatergic antagonist riluzole in a subgroup of 8 patients significantly reduced ICF; motor threshold and SICI were not affected by riluzole. Conclusion:, Transcranial magnetic stimulation shows a selective increase in intracortical facilitation after ethanol withdrawal. Our findings support the theory that altered glutamatergic receptor function plays an important role in the pathogenesis of human alcohol withdrawal. This study provides further physiological evidence that antiglutamatergic approaches represent an efficacious alternative for treating alcohol withdrawal symptoms. [source] Animal Model with Detrusor Overactivity Caused by Cerebral Infarction as a Useful Tool for Pharmacological Therapeutic ApproachesLUTS, Issue 2009Osamu YOKOYAMA Supra-pontine lesions resulting from neurological disorders, such as vascular disease or Parkinson's disease, cause a sense of urgency, frequency, and/or urge incontinence, all of which constitute an overactive bladder. This phenomenon is due in part to the elimination of cortical inhibitory control of the micturition center in the pontine and in part to facilitation of excitatory control. These controls consist of several neurotransmitter systems that include acetylcholine, dopamine, and glutamate. The development of detrusor overactivity following cerebral infarction is mediated by upregulation and downregulation of excitatory and inhibitory inputs of these neurotransmitter systems to the micturition center in the brain, respectively. [source] Medicinal chemistry approaches for the treatment and prevention of Alzheimer's diseaseMEDICINAL RESEARCH REVIEWS, Issue 1 2003S.O. Bachurin Abstract Alzheimer's disease (AD) is the most common form of dementia, which is characterised by progressive deterioration of memory and higher cortical functions that ultimately result in total degradation of intellectual and mental activities. Modern strategies in the search of new therapeutic approaches are based on the morphological and biochemical characteristics of AD, and focused on following directions: agents that compensate the hypofunction of cholinergic system, agents that interfere with the metabolism of beta-amyloid peptide, agents that protect nerve cells from toxic metabolites formed in neurodegenerative processes, agents that activate other neurotransmitter systems that indirectly compensate for the deficit of cholinergic functions, agents that affect the process of the formation of neurofibrillary tangles, anti-inflammatory agents that prevent the negative response of nerve cells to the pathological process. The goal of the present review is the validation and an analysis from the point of view of medicinal chemistry of the principles of the directed search of drugs for the treatment and prevention of AD and related neurodegenerative disorders. It is based on systematization of the data on biochemical and structural similarities in the interaction between physiologically active compounds and their biological targets related to the development of such pathologies. The main emphasis is on cholinomimetic, anti-amyloid and anti-metabolic agents, using the data that were published during the last 3 to 4 years, as well as the results of clinical trials presented on corresponding websites. © 2002 Wiley Periodicals, Inc. Med Res Rev, 23, No. 1, 48,88, 2003; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/med.10026 [source] Serotonin and Parkinson's disease: On movement, mood, and madness,MOVEMENT DISORDERS, Issue 9 2009Susan H. Fox MRCP Abstract An appreciation of the multiple roles that serotonin (5-HT) may play in Parkinson's disease (PD) has increased in recent years. Early pathological studies in PD demonstrated nonselective reductions of 5-HT in brain tissue but little correlation to comorbidities such as dyskinesia and mood disturbance. This, combined with treatment failures using serotonergic drugs in comparison to levodopa, meant the field was largely neglected until recently. The multitude of subtypes of 5-HT receptors in the brain and an increased understanding of the potential function 5-HT may play in modulating other neurotransmitter systems, including dopamine, GABA, and glutamate, have meant an expansion in efforts to develop potential serotonergic drugs for both motor and nonmotor symptoms in PD. However, several unanswered questions remain, and future studies need to focus on correlating changes in 5-HT neurotransmission in both pathological and in vivo imaging studies with a full clinical phenotype. © 2009 Movement Disorder Society [source] New Developments in the Pharmacotherapy of Alcohol DependenceTHE AMERICAN JOURNAL ON ADDICTIONS, Issue 2001Hugh Myrick M.D. Neuroscientific underpinnings and pharmacotherapeutic treatments of sub-stance use disorders are rapidly developing areas of study. In particular, there have been exciting new developments in our understanding of the involvement of excitatory amino acid neurotransmitter systems and the opiate and serotonin systems in the pathophysiology of alcohol withdrawal, alcohol dependence, and in subtypes of individuals with alcoholism. In this article, new developments in the pharmacotherapy of alcohol dependence will be reviewed. In particular, the use of anticonvulsants in alcohol withdrawal and protracted abstinence syndromes will be discussed. New data on opiate antagonists and acamprosate, an agent that exerts actions through excitatory amino acid systems in relapse prevention, will be reviewed. Finally, there will be a review of new data concerning the use of serotonin reuptake inhibitors in subtypes of alcoholism and the use of combination pharmacotherapy. [source] |