Neuroprotection

Distribution by Scientific Domains
Distribution within Life Sciences

Kinds of Neuroprotection

  • significant neuroprotection


  • Selected Abstracts


    Neuroprotection in emerging psychotic disorders

    EARLY INTERVENTION IN PSYCHIATRY, Issue 2 2007
    Gregor Berger
    Abstract Aim:, The emerging phase of psychotic disorders is pleomorphic and fluctuates in presentation. Hence, from a clinical perspective, treatment modalities are often unclear. This paper investigates the rational and potential use of neuroprotective agents in emerging psychotic disorders. Methods:, Medline databases were searched from 1966 to 2006 followed by the cross-checking of references using following keywords: neuroprotection, apoptosis, natural cell death, neurodevelopment, plasticity, neurogenesis, combined with brain and schizophrenia. Results:, Agents such as atypical antipsychotics, antidepressants, omega-3 fatty acids, modulators of glutamateric neurotransmission (e.g. ampakines, glycine, memantine), erythropoietin, N -acetylcysteine, COX-2 inhibitors or antioxidants have neuroprotective (anti-apoptotic) properties and may therefore be able to protect brain maturational processes disturbed in emerging psychotic disorders. Clinical trials suggest that atypical antipsychotics, antidepressants, omega-3 fatty acids and low-dose lithium as sole treatments were able to improve symptoms and functioning, and delay or in some cases even prevent the onset of frank psychosis. Initially these substances have been chosen because they have been used either as sole or augmentation treatments in established psychotic disorders. However, chronicity and already effective treatments may overshadow their potential clinical use in emerging (prodromal) psychosis. Conclusion:, Neuroprotection as a new treatment paradigm for at-risk mental states seems to be promising and pilot data are suggestive that more benign interventions may already be sufficient to delay or even prevent the onset of frank psychosis. A coordinated research effort will be necessary to address the question which agents should be used under which circumstances. [source]


    Inactivation of astroglial NF-,B promotes survival of retinal neurons following ischemic injury

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2009
    Galina Dvoriantchikova
    Abstract Reactive astrocytes have been implicated in neuronal loss following ischemic stroke. However, the molecular mechanisms associated with this process are yet to be fully elucidated. In this work, we tested the hypothesis that astroglial NF-,B, a key regulator of inflammatory responses, is a contributor to neuronal death following ischemic injury. We compared neuronal survival in the ganglion cell layer (GCL) after retinal ischemia-reperfusion in wild-type (WT) and in GFAP-I,B,-dn transgenic mice, where the NF-,B classical pathway is suppressed specifically in astrocytes. The GFAP-I,B,-dn mice showed significantly increased survival of neurons in the GCL following ischemic injury as compared with WT littermates. Neuroprotection was associated with significantly reduced expression of pro-inflammatory genes, encoding Tnf-,, Ccl2 (Mcp1), Cxcl10 (IP10), Icam1, Vcam1, several subunits of NADPH oxidase and NO-synthase in the retinas of GFAP-I,B,-dn mice. These data suggest that certain NF-,B-regulated pro-inflammatory and redox-active pathways are central to glial neurotoxicity induced by ischemic injury. The inhibition of these pathways in astrocytes may represent a feasible neuroprotective strategy for retinal ischemia and stroke. [source]


    Neuroprotection in acute ischemic stroke: are we there yet?

    INTERNATIONAL JOURNAL OF STROKE, Issue 2 2006
    Ashfaq Shuaib
    [source]


    Human neural stem cell transplantation attenuates apoptosis and improves neurological functions after cerebral ischemia in rats

    ACTA ANAESTHESIOLOGICA SCANDINAVICA, Issue 9 2009
    P. ZHANG
    Background: Neuroprotection is a major therapeutic approach for ischemic brain injury. We investigated the neuroprotective effects induced by transplantation of human embryonic neural stem cells (NSCs) into the cortical penumbra 24 h after focal cerebral ischemia. Methods: NSCs were prepared from human embryonic brains obtained at 8 weeks of gestation. Focal cerebral ischemia was induced in adult rats by permanent occlusion of the middle cerebral artery. Animals were randomly divided into two groups: NSCs-grafted group and medium-grafted group (control). Infarct size was assessed 28 days after transplantation by hematoxylin and eosin staining. Neurological severity scores were evaluated before ischemia and at 1, 7, 14, and 28 days after transplantation. The terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay and immunohistochemical analysis of Bcl-2 and Bax were performed at 7, 14, and 28 days after transplantation. Results: Physiological parameters of the two groups were comparable, but not significantly different. NSC transplantation significantly improved neurological function (P<0.05) but did not reduce the infarct size significantly (P>0.05). Compared with the control, NSC transplantation significantly reduced the number of TUNEL- and Bax-positive cells in the penumbra at 7 days. Interestingly, the number of Bcl-2-positive cells in the penumbra after NSC transplantation was significantly higher than that after medium transplantation (P<0.05). Conclusions: The results indicate that NSC transplantation has anti-apoptotic activity and can improve the neurological function; these effects are mediated by the up-regulation of Bcl-2 expression in the penumbra. [source]


    Neuroprotection by baicalein in ischemic brain injury involves PTEN/AKT pathway

    JOURNAL OF NEUROCHEMISTRY, Issue 6 2010
    Chao Liu
    J. Neurochem. (2010) 112, 1500,1512. Abstract Recently more evidences support baicalein (Bai) is neuroprotective in models of ischemic stroke. This study was conducted to determine the molecular mechanisms involved in this effect. Either permanent or transient (2 h) middle cerebral artery occlusion (MCAO) was induced in rats in this study. Permanent MCAO led to larger infarct volumes in contrast to transient MCAO. Only in transient MCAO, Bai administration significantly reduced infarct size. Baicalein also markedly reduced apoptosis in the penumbra of transient MCAO rats. Additionally, oxygen and glucose deprivation (OGD) was used to mimic ischemic insult in primary cultured cortical neurons. A rapid increase in the intracellular reactive oxygen species level and nitrotyrosine formation induced by OGD was counteracted by Bai, which is parallel with attenuated cell injury. The reduction of phosphorylation Akt and glycogen synthase kinase-3, (GSK3,) induced by OGD was restored by Bai, which was associated with preserved levels of phosphorylation of PTEN, the phophatase that negatively regulates Akt. As a consequence, Bcl-2/Bcl-xL-associated death protein phosphorylation was increased and the protein level of Bcl-2 in motochondria was maintained, which subsequently antagonize cytochrome c released in cytosol. LY294002 blocked the increase in phospho-AKT evoked by Bai and abolished the associated protective effect. Together, these findings provide evidence that Bai protects neurons against ischemia injury and this neuroprotective effect involves PI3K/Akt and PTEN pathway. [source]


    The Journal of Neurochemistry 50th Anniversary Symposium S1: Role of Glia in Neuroprotection and Neurodegeneration

    JOURNAL OF NEUROCHEMISTRY, Issue 2007
    Article first published online: 25 APR 200
    First page of article [source]


    Neuroprotection by stem cell factor in rat cortical neurons involves AKT and NF,B

    JOURNAL OF NEUROCHEMISTRY, Issue 1 2005
    Krishnan M. Dhandapani
    Abstract Stem cell factor (SCF) is a highly expressed cytokine in the central nervous system. In the present study, we demonstrate a neuroprotective role for SCF and its tyrosine kinase receptor, c-kit, against camptothecin-induced apoptosis and glutamate excitotoxicity in rat cortical neurons. This protection was blocked by pharmacological or molecular inhibition of either the MEK/ERK or PI3K/Akt signaling pathways. The importance of these pathways was further confirmed by the activation of both ERK, in a MEK-dependent manner, and Akt, via PI3K. Activation of Akt increased the binding of the p50 and p65 subunits of NF,B, which was also important for neuroprotection. Akt inhibition prevented NF,B binding, suggesting a role for Akt in SCF-induced NF,B. Pharmacological inhibition of NF,B or dominant negative I,B also prevented neuroprotection by SCF. SCF up-regulated the anti-apoptotic genes, bcl-2 and bcl-xL in an NF,B-dependent manner. Together, these findings demonstrate a neuroprotective role for SCF in cortical neurons, an effect that was mediated by Akt and ERK, as well as NF,B-mediated gene transcription. SCF represents a novel therapeutic target in the treatment of neurodegenerative disease. [source]


    Neuroprotection with caspase-9 inhbition against in vitro and in vivo trauma

    JOURNAL OF NEUROCHEMISTRY, Issue 2002
    R. A. Wallis
    Objective:, To evaluate the neuroprotective efficacy of the cell-permeable caspase-9 inhibitor, LEHD-CHO, against in vitro and in vivo traumatic neuronal injury. Methods:, The neuroprotective potential of LEHD-CHO was assessed in vitro using rat hippocampal slices. CA1 orthodromic and antidromic population spike (PS) amplitude was monitored before and after fluid percussion injury in slices treated with or without LEHD-CHO. Final recovery of PS amplitude was assessed 95 min after trauma. Studies of in vivo neuroprotection with LEHD-CHO utilized a model of controlled cortical impact (CCI). Rats were given either LEHD-CHO (10 nmol icv) or an equal volume of vehicle at 5 min following CCI. Rats were perfused 24 h after CCI and brains were processed for histological examination. Results:, LEHD-CHO provided significant protection against loss of CA1 evoked response after fluid percussion. The EC50 for LEHD-CHO protection of CA1 orthodromic and antidromic PS amplitude against trauma was 2.1 ,m and 2.3 ,m. Protection extended to preservation of LTP after trauma. In vivo treatment with LEHD-CHO significantly decreased the appearance of eosinophilic cells in the CA1 region after CCI from 131 ± 23 cells in vehicle-treated animals to 24 ± 5 in LEHD-CHO treated animals. Extensive labelling with TUNEL staining was seen in vehicle-treated animals, whereas sections from LEHD-CHO treated animals demonstrated little staining. Conclusions:, These findings indicate that the caspase 9 inhibitor LHED-CHO provides concentration-dependent protection against in vitro CA1 neuronal injury, which extends to protection against in vivo CA1 injury from CCI. They further suggest that inhibition of caspase 9 may be a useful treatment strategy for traumatic brain injury. Acknowledgement:, Supported by VA Research and UCLA BIRC. [source]


    Exercise Neuroprotection in a Rat Model of Binge Alcohol Consumption

    ALCOHOLISM, Issue 3 2010
    J. Leigh Leasure
    Background:, Excessive alcohol intake produces structural and functional deficits in corticolimbic pathways that are thought to underlie cognitive deficits in the alcohol use disorders (AUDs). Animal models of binge alcohol administration support the direct link of high levels of alcohol consumption and neurotoxicity in the hippocampus and surrounding cortex. In contrast, voluntary wheel running enhances hippocampal neurogenesis and generally promotes the health of neurons. Methods:, We investigated whether voluntary exercise prior to binge alcohol exposure could protect against alcohol-induced cell loss. Female Long-Evans rats exercised voluntarily for 14 days before undergoing 4 days of binge alcohol consumption. Brains were harvested immediately after the last dose of alcohol and examined for various histological markers of neurodegeneration, including both cell death (FluoroJade B) and cell birth (Ki67) markers. Results:, Rats that exercised prior to binge exposure were significantly less behaviorally intoxicated, which was not a result of enhanced hepatic metabolism. Rats that exercised prior to binge alcohol consumption had reduced loss of dentate gyrus granule cells and fewer FluoroJade B positive cells in the dentate gyrus and associated entorhinal-perirhinal cortex compared to nonexercisers. However, exercise did not protect against cell death in the piriform cortex nor protect against alcohol-induced decreases in cell proliferation, evidenced by a similar alcohol-induced reduction in Ki67 labeled cells between exercise and sedentary rats. Conclusions:, We conclude that exercise can reduce behavioral sensitivity to ethanol intoxication and protect vulnerable brain areas from alcohol-induced cell death. Exercise neuroprotection of alcohol-induced brain damage has important implications in understanding the neurobiology of the AUDs as well as in developing novel treatment strategies. [source]


    Neuroprotection by melatonin from glutamate-induced excitotoxicity during development of the cerebellum in the chick embryo

    JOURNAL OF PINEAL RESEARCH, Issue 2 2000
    Auxiliadora Espinar
    This work investigated the ability of melatonin to prevent cell damage in the cerebellar cortex of chick embryo caused by glutamate administration. Cell injury was evaluated estimating, at ultrastructural level, the phenomenon of cell death and the synaptogenesis of the Purkinje cells and the cerebellar glomerular synaptic complex. Administration of glutamate during cerebellar development of the chick provokes excitotoxic neuronal degeneration characterized by a phenomenon of neuronal cell death that exhibits essentially the features of a death pattern described as necrosis and the deletion of synaptogenic processes. Our results show that melatonin has a neuroprotective effect against glutamate-induced excitotoxicity. This effect is morphologically revealed by the lack of neural cell death in the embryos treated with melatonin prior to glutamate injection and also by the degree of a synaptogenesis similar to that exhibited by the control group. Likewise, we corroborate the absence of teratological effects of melatonin on chick cerebellar development. Although the possible mechanisms involved in the neuroprotective effect of melatonin are discussed, i.e., direct antioxidant effects, up-regulating endogenous antioxidant defenses, and inhibiting nitric oxide formation activated by glutamate, further studies are required to establish the actual mechanism involved in the neuroprotective effect of melatonin. [source]


    Alcohol in Moderation, Cardioprotection, and Neuroprotection: Epidemiological Considerations and Mechanistic Studies

    ALCOHOLISM, Issue 2 2009
    Michael A. Collins
    In contrast to many years of important research and clinical attention to the pathological effects of alcohol (ethanol) abuse, the past several decades have seen the publication of a number of peer-reviewed studies indicating the beneficial effects of light-moderate, nonbinge consumption of varied alcoholic beverages, as well as experimental demonstrations that moderate alcohol exposure can initiate typically cytoprotective mechanisms. A considerable body of epidemiology associates moderate alcohol consumption with significantly reduced risks of coronary heart disease and, albeit currently a less robust relationship, cerebrovascular (ischemic) stroke. Experimental studies with experimental rodent models and cultures (cardiac myocytes, endothelial cells) indicate that moderate alcohol exposure can promote anti-inflammatory processes involving adenosine receptors, protein kinase C (PKC), nitric oxide synthase, heat shock proteins, and others which could underlie cardioprotection. Also, brain functional comparisons between older moderate alcohol consumers and nondrinkers have received more recent epidemiological study. In over half of nearly 45 reports since the early 1990s, significantly reduced risks of cognitive loss or dementia in moderate, nonbinge consumers of alcohol (wine, beer, liquor) have been observed, whereas increased risk has been seen only in a few studies. Physiological explanations for the apparent CNS benefits of moderate consumption have invoked alcohol's cardiovascular and/or hematological effects, but there is also experimental evidence that moderate alcohol levels can exert direct "neuroprotective" actions,pertinent are several studies in vivo and rat brain organotypic cultures, in which antecedent or preconditioning exposure to moderate alcohol neuroprotects against ischemia, endotoxin, ,-amyloid, a toxic protein intimately associated with Alzheimer's, or gp120, the neuroinflammatory HIV-1 envelope protein. The alcohol-dependent neuroprotected state appears linked to activation of signal transduction processes potentially involving reactive oxygen species, several key protein kinases, and increased heat shock proteins. Thus to a certain extent, moderate alcohol exposure appears to trigger analogous mild stress-associated, anti-inflammatory mechanisms in the heart, vasculature, and brain that tend to promote cellular survival pathways. [source]


    Aucubin prevents loss of hippocampal neurons and regulates antioxidative activity in diabetic encephalopathy rats

    PHYTOTHERAPY RESEARCH, Issue 7 2009
    Hong-Yu Xue
    Abstract In this study, the neuroprotection of aucubin and its mechanism were evaluated in the rat model of diabetic encephalopathy. Diabetes mellitus (DM) rats were stratified by cognitive capability (CC), and assigned to four treatment groups for aucubin treatment (doses of 0, 1, 5 or 10 mg/kg aucubin), with a further two groups of non-DM rats ranked by CC as controls for aucubin (doses of 0 or 5 mg/kg aucubin). Neuroprotection was estimated by the indexes of behavior and histology. Behavioral testing was performed in a Y-maze. The surviving neurons in CA1,CA4 and subiculum (SC) of the hippocampus were counted under a microscope. In addition, the apoptotic neurons in the CA1 of the hippocampus were also examined by using TUNEL staining. In order to clarify the mechanism of aucubin's neuroprotection, the activities of endogenous antioxidants and nitric oxide synthase (NOS) together with the content of lipid peroxide in the hippocampus were assayed. The results proved that aucubin significantly reduced the content of lipid peroxide, regulated the activities of antioxidant enzymatic and decreased the activity of NOS. All these effects indicated that aucubin was a potential neuroprotective agent and its neuroprotective effects were achieved, at least in part, by promoting endogenous antioxidant enzymatic activities. Copyright © 2009 John Wiley & Sons, Ltd. [source]


    Neuroprotection in the SAINT-II aftermath

    ANNALS OF NEUROLOGY, Issue 6 2007
    Dirk M. Hermann MD
    No abstract is available for this article. [source]


    Neuroprotection for Parkinson's disease: Prospects and promises

    ANNALS OF NEUROLOGY, Issue S3 2003
    C. Warren Olanow MD, FRCPC
    No abstract is available for this article. [source]


    Neuroprotection by donepezil against glutamate excitotoxicity involves stimulation of ,7 nicotinic receptors and internalization of NMDA receptors

    BRITISH JOURNAL OF PHARMACOLOGY, Issue 1 2010
    H Shen
    BACKGROUND AND PURPOSE Glutamate excitotoxicity may be involved in ischaemic injury to the CNS and some neurodegenerative diseases, such as Alzheimer's disease. Donepezil, an acetylcholinesterase (AChE) inhibitor, exerts neuroprotective effects. Here we demonstrated a novel mechanism underlying the neuroprotection induced by donepezil. EXPERIMENTAL APPROACH Cell damage in primary rat neuron cultures was quantified by lactate dehydrogenase release. Morphological changes associated with neuroprotective effects of nicotine and AChE inhibitors were assessed by immunostaining. Cell surface levels of the glutamate receptor sub-units, NR1 and NR2A, were analyzed using biotinylation. Immunoblot was used to measure protein levels of cleaved caspase-3, total NR1, total NR2A and phosphorylated NR1. Immunoprecipitation was used to measure association of NR1 with the post-synaptic protein, PSD-95. Intracellular Ca2+ concentrations were measured with fura 2-acetoxymethylester. Caspase 3-like activity was measured using enzyme substrate, 7-amino-4-methylcoumarin (AMC)-DEVD. KEY RESULTS Levels of NR1, a core subunit of the NMDA receptor, on the cell surface were significantly reduced by donepezil. In addition, glutamate-mediated Ca2+ entry was significantly attenuated by donepezil. Methyllycaconitine, an inhibitor of ,7 nicotinic acetylcholine receptors (nAChR), inhibited the donepezil-induced attenuation of glutamate-mediated Ca2+ entry. LY294002, a phosphatidyl inositol 3-kinase (PI3K) inhibitor, had no effect on attenuation of glutamate-mediated Ca2+ entry induced by donepezil. CONCLUSIONS AND IMPLICATIONS Decreased glutamate toxicity through down-regulation of NMDA receptors, following stimulation of ,7 nAChRs, could be another mechanism underlying neuroprotection by donepezil, in addition to up-regulating the PI3K-Akt cascade or defensive system. [source]


    2452: Patients in the DARC: drops revealing retinal ganglion cells in vivo

    ACTA OPHTHALMOLOGICA, Issue 2010
    MF CORDEIRO
    Purpose To provide a review of current & future DARC imaging technologies and their application to neuroprotection Methods Currently, lowering IOP remains the only clinical therapy available in the treatment of glaucoma, despite the evidence that vision loss can continue in the presence of "significant" IOP reduction. Neuroprotection has been increasingly recognized as an important alternative treatment approach, but its emergence has also highlighted the need for both better defined end-points in clinical glaucoma research, as well as earlier and better detection and measures of progression. This could have been a factor in the recent memantine trial. A recent FDA/NEI meeting on end-points in glaucoma emphasized the need for new measurements. As the RGC is the primary injured neuron in this disease, it would seem logical that any modality that could directly measure RGC dysfunction and disease would be ideal. Perhaps the greatest changes that we have encountered recently are in the field of imaging technologies, which have only relatively recently been applied to the eye. Results Advances in this area have allowed unprecedented in vivo access to the retinal layers, using many different properties of light to differentiate cellular structures. DARC is a technology shortly to enter clinical trials which allows the visualization of "sick" RGCs. Conclusion Over the next few years, developments in therapy & diagnostic using DARC should offer great potential in glaucoma and other neurodegenerative conditions. Commercial interest [source]


    Delta2 -Specific Opioid Receptor Agonist and Hibernating Woodchuck Plasma Fraction Provide Ischemic Neuroprotection

    ACADEMIC EMERGENCY MEDICINE, Issue 3 2008
    Meera Govindaswami PhD
    Abstract Objectives:, The authors present evidence that the , opioid receptor agonist Deltorphin-Dvariant (Delt-Dvar) and hibernating woodchuck plasma (HWP), but not summer-active woodchuck plasma (SAWP), can provide significant neuroprotection from focal ischemia in mice by a mechanism that relies in part on reducing nitric oxide (NO) release in ischemic tissue. Methods:, Cerebral ischemia was produced in wild-type and NO synthase,deficient (NOS,/,) mice by transient, 1-hour middle cerebral artery occlusion (MCAO). Behavioral deficits were determined at 22 hours and infarct volume was assessed at 24 hours after MCAO. Mice were treated with saline or Delt-Dvar at 2.0 and 4.0 mg/kg, or 200 ,L of HWP or SAWP. NOS,/, mice were treated with either saline or Delt-Dvar at 4.0 mg/kg. NO release was determined using an N9 microglial cell line pretreated with ,- or ,-specific opioids and HWP or SAWP prior to activation with lipopolysaccharide and interferon-,. Nitrate in the medium was measured as an indicator of NO production. Results:, Infusion of Delt-Dvar or HWP (but not SAWP) decreased infarct volume and improved behavioral deficits following 1 hour of MCAO and 24 hours of reperfusion. In NOS,/, mice, endothelial NOS+/+ is required to provide Delt-Dvar,induced neuroprotection. Delt-Dvar and HWP dose-dependently decreased NO release in cell culture, while SAWP and other ,- and ,-specific opioids did not. Conclusions:, Delt-Dvar and HWP, but not SAWP, are effective neuroprotectant agents in a mouse model of transient MCAO. In cell culture, the mechanism of this ischemic neuroprotection may rely in part on their ability to block NO release. [source]


    Evaluation of early stimulation programs for enhancing brain development

    ACTA PAEDIATRICA, Issue 7 2008
    Christine Bonnier
    Abstract The term ,early intervention' designates educational and neuroprotection strategies aimed at enhancing brain development. Early educational strategies seek to take advantage of cerebral plasticity. Neuroprotection, a term initially used to characterize substances capable of preventing cell death, now encompasses all interventions that promote normal development and prevent disabilities, including organisational, therapeutic and environment-modifying measures, such as early stimulation programs. Early stimulation programs were first devised in the United States for vulnerable children in low-income families; positive effects were recorded regarding school failure rates and social problems. Programs have also been implemented in several countries for premature infants and low-birth-weight infants, who are at high risk for neurodevelopmental abnormalities. The programs target the child, the parents or both. The best evaluated programs are the NIDCAP (Newborn Individualized Developmental Care and Assessment Program) in Sweden for babies <1500 g in neonatal intensive care units and the longitudinal multisite program IHDP (Infant Health and Development Program) created in the United States for infants <37 weeks or <2500 g. Conclusion: Although the NIDCAP and the IHDP targeted different populations, they produced similar effects in several regards: efficacy was greatest with programs involving both the parents and the child; long-term stimulation improved cognitive outcomes and child,parent interactions; cognition showed greater improvements than motor skills and larger benefits were obtained in families that combined several risk factors including low education attainment by the mothers. [source]


    Posttranslational regulation of BCL2 levels in cerebellar granule cells: A mechanism of neuronal survival

    DEVELOPMENTAL NEUROBIOLOGY, Issue 13 2009
    Laura Lossi
    Abstract Apoptosis can be modulated by K+ and Ca2+ inside the cell and/or in the extracellular milieu. In murine organotypic cultures, membrane potential-regulated Ca2+ signaling through calcineurin phosphatase has a pivotal role in development and maturation of cerebellar granule cells (CGCs). P8 cultures were used to analyze the levels of expression of B cell lymphoma 2 (BCL2) protein, and, after particle-mediated gene transfer in CGCs, to study the posttranslational modifications of BCL2 fused to a fluorescent tag in response to a perturbation of K+/Ca2+ homeostasis. There are no changes in Bcl2 mRNA after real time PCR, whereas the levels of the fusion protein (monitored by calculating the density of transfected CGCs under the fluorescence microscope) and of BCL2 (inWestern blotting) are increased. After using a series of agonists/antagonists for ion channels at the cell membrane or the endoplasmic reticulum (ER), and drugs affecting protein synthesis/degradation, accumulation of BCL2 was related to a reduction in posttranslational cleavage by macroautophagy. The ER functionally links the [K+]e and [Ca2+]i to the BCL2 content in CGCs along two different pathways. The first, triggered by elevated [K+]e under conditions of immaturity, is independent of extracellular Ca2+ and operates via IP3 channels. The second leads to influx of extracellular Ca2+ following activation of ryanodine channels in the presence of physiological [K+]e, when CGCs are maintained in mature status. This study identifies novel mechanisms of neuroprotection in immature and mature CGCs involving the posttranslational regulation of BCL2. © 2009 Wiley Periodicals, Inc. Develop Neurobiol, 2009 [source]


    Vascular endothelial growth factor prevents G93A-SOD1-induced motor neuron degeneration

    DEVELOPMENTAL NEUROBIOLOGY, Issue 13 2009
    J. Simon Lunn
    Abstract Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disorder characterized by selective loss of motor neurons (MNs). Twenty percent of familial ALS cases are associated with mutations in Cu2+/Zn2+ superoxide dismutase (SOD1). To specifically understand the cellular mechanisms underlying mutant SOD1 toxicity, we have established an in vitro model of ALS using rat primary MN cultures transfected with an adenoviral vector encoding a mutant SOD1, G93A-SOD1. Transfected cells undergo axonal degeneration and alterations in biochemical responses characteristic of cell death such as activation of caspase-3. Vascular endothelial growth factor (VEGF) is an angiogenic and neuroprotective growth factor that can increase axonal outgrowth, block neuronal apoptosis, and promote neurogenesis. Decreased VEGF gene expression in mice results in a phenotype similar to that seen in patients with ALS, thus linking loss of VEGF to the pathogenesis of MN degeneration. Decreased neurotrophic signals prior to and during disease progression may increase MN susceptibility to mutant SOD1-induced toxicity. In this study, we demonstrate a decrease in VEGF and VEGFR2 levels in the spinal cord of G93A-SOD1 ALS mice. Furthermore, in isolated MN cultures, VEGF alleviates the effects of G93A-SOD1 toxicity and neuroprotection involves phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling. Overall, these studies validate the usefulness of VEGF as a potential therapeutic factor for the treatment of ALS and give valuable insight into the responsible signaling pathways and mechanisms involved. © 2009 Wiley Periodicals, Inc. Develop Neurobiol, 2009 [source]


    Neuroprotective signal transduction in model motor neurons exposed to thrombin: G-protein modulation effects on neurite outgrowth, Ca2+ mobilization, and apoptosis ,

    DEVELOPMENTAL NEUROBIOLOGY, Issue 2 2001
    Irina V. Smirnova
    Abstract Thrombin, the ultimate protease in the blood coagulation cascade, mediates its known cellular effects by unique proteolytic activation of G-protein-coupled protease-activated receptors (PARs), such as PAR1, PAR3, and PAR4, and a "tethered ligand" mechanism. PAR1 is variably expressed in subpopulations of neurons and largely determines thrombin's effects on morphology, calcium mobilization, and caspase-mediated apoptosis. In spinal cord motoneurons, PAR1 expression correlates with transient thrombin-mediated [Ca2+]i flux, receptor cleavage, and elevation of rest [Ca2+]i activating intracellular proteases. At nanomolar concentrations, thrombin retracts neurites via PAR1 activation of the monomeric, 21 kDa Ras G-protein RhoA, which is also involved in neuroprotection at lower thrombin concentrations. Such results suggest potential downstream targets for thrombin's injurious effects. Consequently, we employed several G-protein-specific modulators prior to thrombin exposure in an attempt to uncouple both heterotrimeric and monomeric G-proteins from motoneuronal PAR1. Cholera toxin, stimulating Gs, and lovastatin, which blocks isoprenylation of Rho, reduced thrombin-induced calcium mobilization. In contrast, pertussis toxin and mastoparan, inhibiting or stimulating Go/Gi, were found to exacerbate thrombin action. Effects on neuronal rounding and apoptosis were also detected, suggesting therapeutic utility may result from interference with downstream components of thrombin signaling pathways in human motor neuron disorders, and possibly other neurodegenerative diseases. Published 2001 John Wiley & Sons, Inc. J Neurobiol 48: 87,100, 2001 [source]


    Monoamine oxidase inhibition and neuroprotection by N1 -propargylphenelzine

    DRUG DEVELOPMENT RESEARCH, Issue 1 2001
    B. Duff Sloley
    Abstract The ability of N1 -propargylphenelzine and related N1 -propargylhydrazines to inhibit monoamine oxidase-A (MAO-A) and -B (MAO-B) and to prevent N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4)-induced noradrenergic neurotoxicity was examined. N1 -Propargylphenelzine strongly inhibited MAO-A and MAO-B in in vitro assays using rat brain or liver as the enzyme source. In ex vivo studies in rats, both intraperitoneal and oral administration of N1 -propargylphenelzine strongly inhibited brain and liver MAO-A and MAO-B. The extent of ex vivo MAO inhibition and increased levels of noradrenaline and 5-hydroxytryptamine by N1 -propargylphenelzine was comparable to that of phenelzine. Unlike phenelzine, however, N1 -propargylphenelzine did not elevate ,-aminobutryic acid (GABA) concentrations in rat brain. A single intraperitoneal administration of N1 -propargylphenelzine to mice, 1 week prior to sacrifice, reduced DSP-4-induced depletion of noradrenaline in the hippocampus. The brains of N1 -propargylphenelzine-treated mice from the DSP-4 neurotoxicity experiments had normal MAO-B activity, but MAO-A was significantly inhibited; this was in contrast to animals that had received (,)-deprenyl, who showed normal MAO-A activity but a decrease of MAO-B. The present results indicate that N1 -propargylphenelzine may be a useful neuroprotective compound with a long-term in vivo propensity to inhibit MAO-A. Drug Dev. Res. 53:15,21, 2001. © 2001 Wiley-Liss, Inc. [source]


    Neuroprotection in emerging psychotic disorders

    EARLY INTERVENTION IN PSYCHIATRY, Issue 2 2007
    Gregor Berger
    Abstract Aim:, The emerging phase of psychotic disorders is pleomorphic and fluctuates in presentation. Hence, from a clinical perspective, treatment modalities are often unclear. This paper investigates the rational and potential use of neuroprotective agents in emerging psychotic disorders. Methods:, Medline databases were searched from 1966 to 2006 followed by the cross-checking of references using following keywords: neuroprotection, apoptosis, natural cell death, neurodevelopment, plasticity, neurogenesis, combined with brain and schizophrenia. Results:, Agents such as atypical antipsychotics, antidepressants, omega-3 fatty acids, modulators of glutamateric neurotransmission (e.g. ampakines, glycine, memantine), erythropoietin, N -acetylcysteine, COX-2 inhibitors or antioxidants have neuroprotective (anti-apoptotic) properties and may therefore be able to protect brain maturational processes disturbed in emerging psychotic disorders. Clinical trials suggest that atypical antipsychotics, antidepressants, omega-3 fatty acids and low-dose lithium as sole treatments were able to improve symptoms and functioning, and delay or in some cases even prevent the onset of frank psychosis. Initially these substances have been chosen because they have been used either as sole or augmentation treatments in established psychotic disorders. However, chronicity and already effective treatments may overshadow their potential clinical use in emerging (prodromal) psychosis. Conclusion:, Neuroprotection as a new treatment paradigm for at-risk mental states seems to be promising and pilot data are suggestive that more benign interventions may already be sufficient to delay or even prevent the onset of frank psychosis. A coordinated research effort will be necessary to address the question which agents should be used under which circumstances. [source]


    Ibotenate Injections into the Pre- and Parasubiculum Provide Partial Protection against Kainate-Induced Epileptic Damage in Layer III of Rat Entorhinal Cortex

    EPILEPSIA, Issue 7 2001
    Tore Eid
    Summary: ,Purpose: A loss of neurons in layer III of the entorhinal cortex (EC) is often observed in patients with temporal lobe epilepsy and in animal models of the disorder. We hypothesized that the susceptibility of layer III of the EC to prolonged seizure activity might be mediated by excitatory afferents originating in the presubiculum. Methods: Experiments were designed to ablate the presubiculum unilaterally by focal ibotenate injections and to evaluate the effect of this deafferentation on the vulnerability of EC layer III neurons to the chemoconvulsant kainate (injected systemically 5 days later). Results: After treatment with kainate, 11 of the 15 rats preinjected with ibotenate showed clear-cut, partial neuroprotection in layer III of the EC ipsilateral to the ibotenate lesion. Serial reconstruction of the ibotenate-induced primary lesion revealed that entorhinal neurons were protected only in animals that had lesions in the pre- and parasubiculum, especially in the deep layers (IV,VI). Conclusions: The deep layers of the pre- and parasubiculum appear to control the seizure-induced damage of EC layer III. This phenomenon may be of relevance for epileptogenesis and for the pathogenesis of temporal lobe epilepsy. [source]


    PPAR-gamma-mediated neuroprotection in a chronic mouse model of Parkinson's disease

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 5 2009
    Nicoletta Schintu
    Abstract Rosiglitazone is a commonly prescribed insulin-sensitizing drug with a selective agonistic activity on the peroxisome proliferator-activated receptor-gamma (PPAR-,). PPAR-, can modulate inflammatory responses in the brain, and agonists might be beneficial in neurodegenerative diseases. In the present study we used a chronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine plus probenecid (MPTPp) mouse model of progressive Parkinson's disease (PD) to assess the therapeutic efficacy of rosiglitazone on behavioural impairment, neurodegeneration and inflammation. Mice chronically treated with MPTPp displayed typical features of PD, including impairment of motor and olfactory functions associated with partial loss of tyrosine hydroxylase (TH)-positive neurons in the substantia nigra pars compacta (SNc), decrease of dopamine (DA) and 3,4-dihydroxyphenylacetic acid (DOPAC) content and dynorphin (Dyn) mRNA levels in the caudate-putamen (CPu), intense microglial and astroglial response in the SNc and CPu. Chronic rosiglitazone, administered in association with MPTPp, completely prevented motor and olfactory dysfunctions and loss of TH-positive cells in the SNc. In the CPu, loss of striatal DA was partially prevented, whereas decreases in DOPAC content and Dyn were fully counteracted. Moreover, rosiglitazone completely inhibited microglia reactivity in SNc and CPu, as measured by CD11b immunostaining, and partially inhibited astroglial response assessed by glial fibrillary acidic protein immunoreactivity. Measurement of striatal MPP+ levels 2, 4, 6 h and 3 days after chronic treatment indicated that MPTP metabolism was not altered by rosiglitazone. The results support the use of PPAR-, agonists as a putative anti-inflammatory therapy aimed at arresting PD progression, and suggest that assessment in PD clinical trials is warranted. [source]


    Overexpression of APP provides neuroprotection in the absence of functional benefit following middle cerebral artery occlusion in rats

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 7 2007
    Jared Clarke
    Abstract Cerebral ischaemia leads to a transient accumulation of ,-amyloid precursor protein (APP) and ,-amyloid (A,) peptides adjacent to the ischaemic lesion. There is conflicting evidence that APP/A, fragments may either enhance neuronal plasticity or be neurotoxic. The aim of the current study was to assess the effect of overexpression of human APP in rats on functional recovery following cerebral ischaemia. Adult APP-overexpressing (hAPP695 Tg) rats subjected to transient middle cerebral artery occlusion (MCAO) had significantly smaller infarct volumes than non-transgenic littermates, yet did not perform better on a series of sensorimotor or learning tests during a 6-month follow-up period. In fact, transgenic animals were found to be significantly more impaired in both the beam-walking and Morris water maze tests following MCAO. Immunohistochemistry showed human A,-positive staining in the cortex and hippocampus of APP transgenic rats. The present data suggest that while overexpression of APP in rats may provide some histological neuroprotection in the event of cerebral ischaemia, this does not translate into significant functional recovery. [source]


    Injury-induced neurogenesis in Bax-deficient mice: evidence for regulation by voltage-gated potassium channels

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2007
    Jian Shi
    Abstract Adult neural stem and progenitor cells may help remodel the brain in response to injury. The pro-apoptotic molecule Bax has recently been identified as a key player in adult neural stem cell survival. In Bax-deficient mice that have undergone traumatic brain injury, we find increased numbers of neural progenitor cells in the dentate gyrus and improved remodeling of the hippocampus. Exogenous potassium chloride mimics spreading depression (SD)-like events in vitro, and Bax-deficient neural stem cells proliferate in response to these events more robustly than wild-type neural stem cells. Selective potassium channel blockers interrupt SD-mediated stimulation of stem cells. In addition, the potassium channel Kv4.1 is expressed within neural stem and progenitor cells in the dentate gyrus and is increased in Bax-deficiency. These data suggest that the neuroprotection observed after injury in Bax-deficiency may be due to increased neurogenesis via activation of the Kv4 family of potassium channels. [source]


    Cooperative effects of bcl-2 and AAV-mediated expression of CNTF on retinal ganglion cell survival and axonal regeneration in adult transgenic mice

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2006
    Simone G. Leaver
    Abstract We used a gene therapy approach in transgenic mice to assess the cooperative effects of combining anti-apoptotic and growth-promoting stimuli on adult retinal ganglion cell (RGC) survival and axonal regeneration following intraorbital optic nerve injury. Bi- cistronic adeno-associated viral vectors encoding a secretable form of ciliary neurotrophic factor and green fluorescent protein (AAV-CNTF-GFP) were injected into eyes of mice that had been engineered to over-express the anti-apoptotic protein bcl-2. For comparison this vector was also injected into wildtype (wt) mice, and both mouse strains were injected with control AAV encoding GFP. Five weeks after optic nerve injury we confirmed that bcl-2 over-expression by itself promoted the survival of axotomized RGCs, but in contrast to previous reports we also saw regeneration of some mature RGC axons beyond the optic nerve crush. AAV-mediated expression of CNTF in adult retinas significantly increased the survival and axonal regeneration of RGCs following axotomy in wt and bcl-2 transgenic mice; however, the effects were greatest in the transgenic strain. Compared with AAV-GFP-injected bcl-2 mice, RGC viability was increased by about 50% (mean, 36 738 RGCs per retina), and over 1000 axons per optic nerve regenerated 1,1.5 mm beyond the crush. These findings exemplify the importance of using a multifactorial therapeutic approach that enhances both neuroprotection and regeneration after central nervous system injury. [source]


    Hippocampal vulnerability following traumatic brain injury: a potential role for neurotrophin-4/5 in pyramidal cell neuroprotection

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 5 2006
    N. C. Royo
    Abstract Traumatic brain injury (TBI) causes selective hippocampal cell death, which is believed to be associated with cognitive impairment observed both in clinical and experimental settings. Although neurotrophin administration has been tested as a strategy to prevent cell death following TBI, the potential neuroprotective role of neurotrophin-4/5 (NT-4/5) in TBI remains unknown. We hypothesized that NT-4/5 would offer neuroprotection for selectively vulnerable hippocampal neurons following TBI. Measurements of NT-4/5 in rats subjected to lateral fluid percussion (LFP) TBI revealed two,threefold increases in the injured cortex and hippocampus in the acute period (1,3 days) following brain injury. Subsequently, the response of NT-4/5 knockout (NT-4/5,/,) mice to controlled-cortical impact TBI was investigated. NT-4/5,/, mice were more susceptible to selective pyramidal cell loss in Ahmon's corn (CA) subfields of the hippocampus following TBI, and showed impaired motor recovery when compared with their brain-injured wild-type controls (NT-4/5wt). Additionally, we show that acute, prolonged administration of recombinant NT-4/5 (5 µg/kg/day) prevented up to 50% of the hippocampal CA pyramidal cell death following LFP TBI in rats. These results suggest that post-traumatic increases in endogenous NT-4/5 may be part of an adaptive neuroprotective response in the injured brain, and that administration of this neurotrophic factor may be useful as a therapeutic strategy following TBI. [source]


    Role of gap junctional coupling in astrocytic networks in the determination of global ischaemia-induced oxidative stress and hippocampal damage

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2006
    Jose L. Perez Velazquez
    Abstract While there is evidence that gap junctions play important roles in the determination of cell injuries, there is not much known about mechanisms by which gap junctional communication may exert these functions. Using a global model of transient ischaemia in rats, we found that pretreatment with the gap junctional blockers carbenoxolone, 18,-glycyrrhetinic acid and endothelin, applied via cannulae implanted into the hippocampus in one hemisphere, resulted in decreased numbers of TUNEL-positive neurons, as compared with the contralateral hippocampus that received saline injection. Post-treatment with carbenoxolone for up to 30 min after the stroke injury still resulted in decreased cell death, but post-treatment at 90 min after the ischaemic insult did not result in differences in cell death. However, quinine, an inhibitor of Cx36-mediated gap junctional coupling, did not result in appreciable neuroprotection. Searching for a possible mechanism for the observed protective effects, possible actions of the gap junctional blockers in the electrical activity of the hippocampus during the ischaemic insult were assessed using intracerebral recordings, with no differences observed between the saline-injected and the contralateral drug-injected hippocampus. However, a significant reduction in lipid peroxides, a measure of free radical formation, in the hippocampus treated with carbenoxolone, revealed that the actions of gap junctional coupling during injuries may be causally related to oxidative stress. These observations suggest that coupling in glial networks may be functionally important in determining neuronal vulnerability to oxidative injuries. [source]