Home About us Contact | |||
Neuropathological Processes (neuropathological + process)
Selected AbstractsWhen does Parkinson's disease begin?,MOVEMENT DISORDERS, Issue S2 2009Carles Gaig MD Abstract Pathological and neuroimaging studies have shown that in Parkinson's disease (PD) there is a "subclinical" or "premotor" period during which dopaminergic neurons in the substantia nigra (SN) degenerate but typical motor symptoms have not yet developed. Post-mortem studies based on nigral cell counts and evaluating dopamine levels in the striata, and imaging studies assessing the nigrostriatal pathway in vivo, have estimated that this time period could last 3 to 6 years. In addition, emerging evidence indicates that the neuropathological process of PD does not start in the SN but more likely elsewhere in the nervous system: in the lower brainstem and the olfactory bulb, or even more distant from the SN, such as in the peripheral autonomic nervous system. Patients with PD frequently can present non-motor symptoms, such as hyposmia or constipation, years before the development of classical motor signs. The physiopathology of these "premotor" symptoms, though still unclear, is currently thought to be related to early involvement by the pathological process underlying PD of non-dopaminergic lower brainstem structures or autonomic plexuses. However, the answer to the question "when does PD start" remains uncertain. Here, we review clinical, pathological, and neuroimaging data related to the onset of the pathological process of PD, and propose that its onset is non-motor and that non-motor symptoms could begin in many instances 10 and 20 years before onset of motor symptoms. The variable course of the disorder once the motor symptoms develop, suggests that the start and progression of premotor PD is also highly variable andgiven the heterogeneous nature of PD, may differ depending on the cause/s of the syndrome. When and where the neuropathological process develops in PD remains uncertain. © 2009 Movement Disorder Society [source] Temporal lobe grey matter volume in schizophrenia is associated with a genetic polymorphism influencing glycogen synthase kinase 3-, activityGENES, BRAIN AND BEHAVIOR, Issue 4 2010F. Benedetti At the crossroad of multiple pathways regulating trophism and metabolism, glycogen synthase kinase (GSK)3 is considered a key factor in influencing the susceptibility of neurons to harmful stimuli (neuronal resilience) and is a target for several psychiatric drugs that directly inhibit it or increase its inhibitory phosphorylation. Inhibition of GSK3 prevents apoptosis and could protect against the neuropathological processes associated with psychiatric disorders. A GSK3- ,promoter single-nucleotide polymorphism (rs334558) influences transcriptional strength, and the less active form was associated with less detrimental clinical features of mood disorders. Here we studied the effect of rs334558 on grey matter volumes (voxel-based morphometry) of 57 patients affected by chronic schizophrenia. Carriers of the less active C allele variant showed significantly higher brain volumes in an area encompassing posterior regions of right middle and superior temporal gyrus, within the boundaries of Brodmann area 21. The temporal lobe is the brain parenchymal region with the most consistently documented morphometric abnormalities in schizophrenia, and neuropathological processes in these regions develop soon at the beginning of the illness. These results support the interest for GSK3- ,as a factor affecting neuropathology in major behavioural disorders, such as schizophrenia, and thus as a possible target for treatment. [source] Characterization of chemokines and their receptors in the central nervous system: physiopathological implicationsJOURNAL OF NEUROCHEMISTRY, Issue 6 2002Adriana Bajetto Abstract Chemokines represent key factors in the outburst of the immune response, by activating and directing the leukocyte traffic, both in lymphopoiesis and in immune surveillance. Neurobiologists took little interest in chemokines for many years, until their link to acquired immune deficiency syndrome-associated dementia became established, and thus their importance in this field has been neglected. Nevertheless, the body of data on their expression and role in the CNS has grown in the past few years, along with a new vision of brain as an immunologically competent and active organ. A large number of chemokines and chemokine receptors are expressed in neurons, astrocytes, microglia and oligodendrocytes, either constitutively or induced by inflammatory mediators. They are involved in many neuropathological processes in which an inflammatory state persists, as well as in brain tumor progression and metastasis. Moreover, there is evidence for a crucial role of CNS chemokines under physiological conditions, similar to well known functions in the immune system, such as proliferation and developmental patterning, but also peculiar to the CNS, such as regulation of neural transmission, plasticity and survival. [source] Checkpoints and pitfalls in the experimental neuropathology of circulatory disturbanceNEUROPATHOLOGY, Issue 1 2003Toshihiko Kuroiwa In neural tissue injury many pathological processes are common to different neurological disorders, including cerebral ischemia. Because ischemia has a fundamentally simple impact on neural tissue, good laboratory modeling can help improve the general understanding of the neuropathological processes involved. Summarized here are some basic principles that should be followed to ensure that cerebral ischemia studies are reproducible and informative: (i) selection of an appropriate model of cerebral ischemia in an appropriate species (although rodents are widely used for genomic studies, the use of larger animals, with brain structures macroscopically similar to those of humans, is appropriate for many studies, e.g. of white matter lesions or the pathophysiology of cerebral edema); (ii) correct maintenance of physiological parameters, including body temperature, systemic blood pressure, and blood gas tensions, under appropriate general anesthesia; (iii) selection of an appropriate method of cerebral blood flow (CBF) monitoring (decisions include whether or not the experiment requires real-time monitoring, in vivo measurement, and CBF mapping); (iv) appropriate timing of drug application in therapeutic studies (many drugs that are effective when given immediately after a short period of ischemi are ineffective in clinical trials, probably because of longer periods of ischemia and delayed drug delivery in clinical settings); and (v) multiparametric evaluation of therapeutic effect (with the recent increase in diagnosis of cases of mild stroke, measurement of mortality and infarct size have proven to be insufficient for the evaluation of therapeutic effect). Use of mild ischemia models and batteries of neurological tests for individual neurological functions, such as motor, somatosensory, and visual function, are becoming important in experimental ischemia research. In histological evaluation, assessment of the extent of both selective neuronal loss and the infarct will become mandatory. Regional analysis of each brain structure and coordination of the results with the apparent neurological dysfunction is a promising approach. [source] |