Neuronal Viability (neuronal + viability)

Distribution by Scientific Domains


Selected Abstracts


Intracellular Calcium Increase in Epileptiform Activity: Modulation by Levetiracetam and Lamotrigine

EPILEPSIA, Issue 7 2004
Antonio Pisani
Summary:,Purpose: Alterations in neuronal calcium (Ca2+) homeostasis are believed to play an essential role in the generation and propagation of epileptiform events. Levetiracetam (LEV) and lamotrigine (LTG), novel antiepileptic drugs (AEDs), were tested on epileptiform events and the corresponding elevations in intracellular Ca2+ concentration ([Ca2+]i) recorded from rat neocortical slices. Methods: Electrophysiological recordings were performed from single pyramidal neurons from a slice preparation. Spontaneous epileptiform events consisting of long-lasting, repetitive paroxysmal depolarization shifts (PDSs) and interictal spike activity were induced by reducing the magnesium concentration from the solution and by adding bicuculline and 4-aminopyridine. Simultaneously, microfluorimetric measurements of [Ca2+]i were performed. Optical imaging with Ca2+ indicators revealed a close correlation between Ca2+ transients and epileptiform events. Results: Both LEV and LTG were able to reduce both amplitude and duration of PDSs, as well as the concomitant elevation in [Ca2+]i, in a dose-dependent fashion. Whole-cell patch-clamp recordings from isolated neocortical neurons revealed that LEV significantly reduced N-, and partially P/Q-type high-voltage-activated (HVA) Ca2+ currents, whereas sodium currents were unaffected. Interestingly, the inhibitory effects of LEV were mimicked and occluded by LTG or by a combination of ,-conotoxin GVIA and ,-agatoxin IVA, selective blockers of N- and P/Q-type HVA channels, respectively, suggesting a common site of action for these AEDs. Conclusions: These results demonstrate that large, transient elevations in neuronal [Ca2+]i correlate to epileptiform discharges. The antagonistic effects of LEV and LTG on [Ca2+]i overload might represent the basis for their anticonvulsant efficacy and could preserve neuronal viability. [source]


Enhancement of neuronal outward delayed rectifier K+ current by human monocyte-derived macrophages

GLIA, Issue 14 2009
Dehui Hu
Abstract Macrophages are critical cells in mediating the pathology of neurodegenerative disorders and enhancement of neuronal outward potassium (K+) current has implicated in neuronal apoptosis. To understand how activated macrophages induce neuronal dysfunction and injury, we studied the effects of lipopolysaccharide (LPS)-stimulated human monocytes-derived macrophage (MDM) on neuronal outward delayed rectifier K+ current (IK) and resultant change on neuronal viability in primary rat hippocampal neuronal culture. Bath application of LPS-stimulated MDM-conditioned media (MCM) enhanced neuronal IK in a concentration-dependentmanner, whereas non-stimulated MCM failed to alter neuronal IK. The enhancement of neuronal IK was repeated in a macrophage-neuronal co-culture system. The link of stimulated MCM (MCM(+))-associated enhancement of IK to MCM(+)-induced neuronal injury, as detected by PI/DAPI (propidium iodide/4,,6-diamidino-2-phenylindol) staining and MTT assay, was demonstrated by experimental results showing that addition of IK blocker tetraethylammonium to the culture protected hippocampal neurons from MCM(+)-associated challenge. Further investigation revealed elevated levels of Kv 1.3 and Kv 1.5 channel expression in hippocampal neurons after addition of MCM(+) to the culture. These results suggest that during brain inflammation macrophages, through their capacity of releasing bioactive molecules, induce neuronal injury by enhancing neuronal IK and that modulation of Kv channels is a new approach to neuroprotection. © 2009 Wiley-Liss, Inc. [source]


ERK signaling leads to mitochondrial dysfunction in extracellular zinc-induced neurotoxicity

JOURNAL OF NEUROCHEMISTRY, Issue 2 2010
Kai He
J. Neurochem. (2010) 114, 452,461. Abstract A zinc-induced signaling pathway leading to extracellular signal-regulated kinase 1/2 (ERK1/2) activation and subsequent neuronal death has been investigated. We find that an extracellular zinc application stimulates biphasic phosphorylation of ERK1/2 and p38 MAPK in rat cultured neurons. The activation of ERK1/2, but not p38, is responsible for zinc neurotoxicity as only U0126, a MEK inhibitor that blocks ERK1/2 phosphorylation, significantly protects cortical neurons from zinc exposure. Over-expression of a dominant negative Ras mutant blocks zinc-induced Elk1-dependent gene expression in neurons, indicating the involvement of Ras activation in the zinc pathway leading to ERK phosphorylation and Elk1 signaling. We also find that zinc treatment results in neuronal mitochondrial hyperpolarization. Importantly, both U0126 and bongkrekic acid, an inhibitor of the mitochondrial adenine nucleotide translocase, effectively reduce zinc-triggered mitochondrial changes. As bongkrekic acid also prevents zinc-triggered neuronal death but not ERK1/2 phosphorylation, activation of MAPK signaling precedes and is required for mitochondrial dysfunction and cell death. These results provide new insight on the mechanism of extracellular zinc-induced toxicity in which the regulation of mitochondrial function by the Ras/MEK/ERK pathway is closely associated with neuronal viability. [source]


Aging-dependent changes of microglial cells and their relevance for neurodegenerative disorders

JOURNAL OF NEUROCHEMISTRY, Issue 5 2010
Rommy Von Bernhardi
J. Neurochem. (2010) 112, 1099,1114. Abstract Among multiple structural and functional brain changes, aging is accompanied by an increase of inflammatory signaling in the nervous system as well as a dysfunction of the immune system elsewhere. Although the long-held view that aging involves neurocognitive impairment is now dismissed, aging is a major risk factor for neurodegenerative diseases such as Alzheimer`s disease, Parkinson`s disease and Huntington's disease, among others. There are many age-related changes affecting the brain, contributing both to certain declining in function and increased frailty, which could singly and collectively affect neuronal viability and vulnerability. Among those changes, both inflammatory responses in aged brains and the altered regulation of toll like receptors, which appears to be relevant for understanding susceptibility to neurodegenerative processes, are linked to pathogenic mechanisms of several diseases. Here, we review how aging and pro-inflammatory environment could modulate microglial phenotype and its reactivity and contribute to the genesis of neurodegenerative processes. Data support our idea that age-related microglial cell changes, by inducing cytotoxicity in contrast to neuroprotection, could contribute to the onset of neurodegenerative changes. This view can have important implications for the development of new therapeutic approaches. [source]


A novel effect of rivastigmine on pre-synaptic proteins and neuronal viability in a neurodegeneration model of fetal rat primary cortical cultures and its implication in Alzheimer's disease

JOURNAL OF NEUROCHEMISTRY, Issue 4 2010
Jason A. Bailey
J. Neurochem. (2010) 112, 843,853. Abstract Alzheimer's disease (AD) is characterized by deposition of amyloid-, peptide plaque, disrupted amyloid-,-precursor protein (APP) metabolism, hyperphosphorylation of Tau leading to neurofibrillary tangles and associated neurotoxicity. Moreover, there is synaptic loss in AD, which occurs early and may precede frank amyloidosis. The central cholinergic system is especially vulnerable to the toxic events associated with AD, and reduced acetylcholine levels in specific brain regions is thought to be central to memory deficits in AD. First-generation cholinesterase inhibitors have provided only symptomatic relief to patients with AD by prolonging the action of remaining acetylcholine with little or no change in the course of the disease. Some second-generation cholinesterase inhibitors are multifunctional drugs that may provide more than purely palliative results. To evaluate the effects of the dual acetylcholinesterase and butyrylcholinesterase inhibitor rivastigmine on key aspects of AD, embryonic day 16 rat primary cortical cultures were treated with rivastigmine under media conditions observed to induce time-dependent neurodegeneration. Samples were subjected to western blotting and immunocytochemistry techniques to determine what influence this drug may have on synaptic proteins and neuronal morphology. There was a strong increase in relative cell viability associated with rivastigmine treatment. Significant dose-dependent increases were observed in the levels of synaptic markers synaptosomal-associated protein of 25 kDa (SNAP-25) and synaptophysin, as well as the neuron-specific form of enolase. Together with an observed enhancement of neuronal morphology, our results suggest a rivastigmine-mediated novel neuroprotective and/or neurorestorative effects involving the synapse. Our observations may explain the potential for rivastigmine to alter the course of AD, and warrant further investigations into using butyrylcholinesterase inhibition as a therapeutic strategy for AD, especially with regard to restoration of synaptic function. [source]


Laminar variation in neuronal viability and trophic dependence in neocortical slices

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 5 2001
Mary M. Niblock
Abstract Organotypic slices are used frequently in studies of central nervous system development and function because they provide excellent experimental access with significant preservation of cellular context and relationships. Within a slice, however, a variety of factors may cause individual classes of neurons to respond differently to the culture environment. Differences in deafferentation, cellular maturation, trophic dependence and ongoing naturally occurring cell death may produce changes in the neuronal population that are transparent to the experimenter but that could affect experimental results significantly. In this study, we examined the distribution and prevalence of cell death among neurons in each cortical layer in organotypic slices. In addition, we assessed the ability of several neurotrophic factors to ameliorate neuronal death in each cortical layer. Within the first 24 hr in culture, there was striking laminar variation in the extent of neuronal death in culture, which could not be accounted for by the pattern of programmed cell death in vivo. In addition, neurons in the six layers of the neocortex differed in the degree to which they could be rescued by neurotrophic factors. These data suggest that differential neuronal death and rescue are important considerations in studies utilizing organotypic slices and may represent particularly confounding variables in studies of effects of trophic factors in such preparations. J. Neurosci. Res. 65:455,462, 2001. © 2001 Wiley-Liss, Inc. [source]


Ethanol Inhibits Muscarinic Receptor-Induced Axonal Growth in Rat Hippocampal Neurons

ALCOHOLISM, Issue 11 2009
Kathryn L. VanDeMark
Background:, In utero alcohol exposure can lead to fetal alcohol spectrum (FAS) disorders characterized by cognitive and behavioral deficits. In vivo and in vitro studies have shown that ethanol alters neuronal development. One mechanism through which ethanol has been shown to exert its effects is the perturbation of activated signaling cascades. The cholinergic agonist carbachol has been shown to induce axonal outgrowth through intracellular calcium mobilization, protein kinase C (PKC) activation, and ERK1/2 phosphorylation. This study investigated the effect of ethanol on the differentiation of rat hippocampal pyramidal neurons induced by carbachol as a possible mechanism involved in the developmental neurotoxicity of ethanol. Methods:, Prenatal rat hippocampal pyramidal neurons were treated with ethanol (50 to 75 mM) in the presence or absence of carbachol for 24 hours. Neurite outgrowth was assessed spectrophotometrically; axonal length was measured in neurons fixed and immunolabeled with the neuron-specific ,III tubulin antibody; cytotoxicity was analyzed using the thiazolyl blue tetrazolium bromide assay. The effect of ethanol on carbachol-stimulated intracellular calcium mobilization was assessed utilizing the fluorescent calcium probe, Fluo-3AM. The PepTag® assay for nonradioactive detection of PKC from Promega was used to measure PKC activity, and ERK1/2 activation was determined by densitometric analysis of Western blots probed for phospo-ERK1/2. Results:, Ethanol treatment (50 to 75 mM) caused an inhibition of carbachol-induced axonal growth, without affecting neuronal viability. Neuron treatment for 15 minutes with ethanol did not inhibit the carbachol-stimulated rise in intracellular calcium, while inhibiting PKC activity at the highest tested concentration and ERK1/2 phosphorylation at both the concentrations used in this study. On the other hand, neuron treatment for 24 hours with ethanol significantly inhibited carbachol-induced increase in intracellular calcium. Conclusions:, Ethanol inhibited carbachol-induced neurite outgrowth by inhibiting PKC and ERK1/2 activation. These effects may be, in part, responsible for some of the cognitive deficits associated with in utero alcohol exposure. [source]


Brain Metabolite Concentrations and Neurocognition During Short-term Recovery from Alcohol Dependence: Preliminary Evidence of the Effects of Concurrent Chronic Cigarette Smoking

ALCOHOLISM, Issue 3 2006
Timothy C. Durazzo
Background: Longitudinal studies of brain tissue metabolite recovery in short-term abstinent alcoholics have primarily investigated the frontal lobes and cerebellum with variable results. Preliminary proton magnetic resonance spectroscopic imaging (1H MRSI) suggested that chronic cigarette smoking exacerbates alcohol-induced brain injury in 1-week abstinent alcoholics. However, the potential effects of chronic cigarette smoking on the recovery of alcohol-induced brain injury have not been studied. Methods: Multislice short-echo time 1H MRSI was used to measure longitudinal changes in common brain metabolites in 25 recovering alcohol-dependent individuals (RA), retrospectively assigned to smoking (n=14) and nonsmoking (n=11) subgroups. Recovering alcohol-dependent individuals in longitudinal analyses were studied after approximately 7 and 34 days of abstinence from alcohol. In cross-sectional analyses, 36 RA (19 smokers, 17 nonsmokers) with approximately 34 days of sobriety were compared with 29 light drinkers (LD). Relationships between neurocognition and metabolite concentrations in abstinent RA were also examined. Results: Over 1 month of abstinence from alcohol, RA, as a group, showed significant increases of regional N -acetylaspartate (NAA; marker of neuronal viability) and choline-containing compounds (Cho; marker of cell membrane synthesis/turnover) primarily in frontal and parietal lobes. These increases appeared to be driven by nonsmoking RA. Cross-sectional results indicate that metabolite levels in RA at 35 days of sobriety are not significantly different from those in LD in most regions, except for lower NAA and Cho in parietal WM and subcortical structures. However, metabolite levels at that time appear to be strongly modulated by smoking status. The patterns of metabolite,neurocognition relationships were different for nonsmoking and smoking RA. Conclusions: Within the first weeks of sobriety, regional brain NAA and Cho levels increased, but metabolite levels did not normalize in all brain regions after 35 days of sobriety. Neurobiologic recovery in RA appeared to be adversely affected by chronic smoking. Greater consideration of the effects of continued cigarette smoking on the neurobiologic and neurocognitive recovery of alcohol-dependent individuals is warranted. [source]


Magnetic resonance spectroscopy in anxiety disorders

ACTA NEUROPSYCHIATRICA, Issue 2 2008
Clarissa Trzesniak
Objective:, Magnetic resonance spectroscopy (MRS) is a non-invasive in vivo method used to quantify metabolites that are relevant to a wide range of brain processes. This paper briefly describes neuroimaging using MRS and provides a systematic review of its application to anxiety disorders. Method:, A literature review was performed in the PubMed, Lilacs and Scielo databases using the keywords spectroscopy and anxiety disorder. References of selected articles were also hand-searched for additional citations. Results:, Recent studies have shown that there are significant metabolic differences between patients with anxiety disorders and healthy controls in various regions of the brain. Changes were mainly found in N -acetylaspartate, which is associated with neuronal viability, but some of them were also seen in creatine, a substance that is thought to be relatively constant among individuals with different pathological conditions. Conclusions:, MRS is a sophisticated neuroimaging technique that has provided useful insights into the biochemical and neurobiological basis of many anxiety disorders. Nevertheless, its utilization in some anxiety disorders is still modest, particularly social phobia and generalised anxiety. Although it is an extremely useful advance in neuroimaging, further research in other brain areas and patient populations is highly advisable. [source]