Neuronal Subpopulations (neuronal + subpopulation)

Distribution by Scientific Domains


Selected Abstracts


Neural stem cells for the treatment of disorders of the enteric nervous system: Strategies and challenges

DEVELOPMENTAL DYNAMICS, Issue 1 2007
Maria-Adelaide Micci
Abstract The main goal of this review is to summarize the status of the research in the field of stem cells transplantation, as it is applicable to the treatment of gastrointestinal motility. This field of research has advanced tremendously in the past 10 years, and recent data produced in our laboratories as well as others is contributing to the excitement on the use of neural stem cells (NSC) as a valuable therapeutic approach for disorders of the enteric nervous system characterized by a loss of critical neuronal subpopulations. There are several sources of NSC, and here we describe therapeutic strategies for NSC transplantation in the gut. These include using NSC as a relatively nonspecific cellular replacement strategy in conditions where large populations of neurons or their subsets are missing or destroyed. As with many other recent "breakthroughs" stem cell therapy may eventually prove to be overrated. However, at the present time, it does appear to provide the hope for a true cure for many currently intractable diseases of both the central and the peripheral nervous system. Certainly more extensive research is needed in this field. We hope that our review will encourage new investigators in entering this field of research ad contribute to our knowledge of the potentials of NSC and other cells for the treatment of gastrointestinal dysmotility. Developmental Dynamics 236:33,43, 2007. © 2006 Wiley-Liss, Inc. [source]


Zac1 is expressed in progenitor/stem cells of the neuroectoderm and mesoderm during embryogenesis: Differential phenotype of the Zac1-expressing cells during development

DEVELOPMENTAL DYNAMICS, Issue 2 2005
Tony Valente
Abstract Zac1, a new zinc-finger protein that regulates both apoptosis and cell cycle arrest, is abundantly expressed in many neuroepithelia during early brain development. In the present work, we study the expression of Zac1 during early embryogenesis and we determine the cellular phenotype of the Zac1-expressing cells throughout development. Our results show that Zac1 is expressed in the progenitor/stem cells of several tissues (nervous system, skeleton, and skeletal muscle), because they colocalize with several progenitor/stem markers (Nestin, glial fibrillary acidic protein, FORSE-1, proliferating cell nuclear antigen, and bromodeoxyuridine). In postnatal development, Zac1 is expressed in all phases of the life cycle of the chondrocytes (from proliferation to apoptosis), in some limbic ,-aminobutyric acid-ergic neuronal subpopulations, and during developmental myofibers. Therefore, the intense expression of Zac1 in the progenitor/stem cells of different cellular lineages during the proliferative cycle, before differentiation into postmitotic cells, suggests that Zac1 plays an important role in the control of cell fate during neurogenesis, chondrogenesis, and myogenesis. Developmental Dynamics 233:667,679, 2005. © 2005 Wiley-Liss, Inc. [source]


Striatal modulation of cAMP-response-element-binding protein (CREB) after excitotoxic lesions: implications with neuronal vulnerability in Huntington's disease

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2006
Carmela Giampà
Abstract Recent evidence has shown that the activity of cAMP responsive element-binding protein (CREB) and of CREB-binding protein (CBP) is decreased in Huntington's disease (HD) [Steffan et al. (2000)Proc. Natl Acad. Sci. USA, 97, 6763,6768; Gines et al. (2003)Hum. Mol. Genet., 12, 497,508; Rouaux et al. (2004) Biochem. Pharmacol., 68, 1157,1164; Sugars et al. (2004)J. Biol. Chem., 279, 4988,4999]. Such decrease is thought to reflect the impaired energy metabolism observed in a HD mouse model, where a decline in striatum cAMP levels has been observed [Gines et al. (2003)Hum. Mol. Genet., 12, 497,508]. Increased levels of CREB have also been demonstrated to exert neuroprotective functions [Lonze & Ginty (2002)Neuron, 35, 605,623; Lonze et al. (2002)Neuron, 34, 371,385]. Our study aimed to investigate the distribution of CREB in the neuronal subpopulations of the striatum in normal rats compared to the HD model of quinolinic acid lesion. Twenty-five Wistar rats were administered quinolinic acid 100 mm into the right striatum, and killed after 24 h, 48 h, 1 week, 2 weeks, and six weeks, respectively. The contralateral striata were used as controls. Dual-label immunofluorescence was employed using antibodies against phosphorylated CREB and each of the different neuronal subpopulations markers. Our results show that activated CREB levels decrease progressively in projection neurons and parvalbumin (PARV) and calretinin (CALR) interneurons, whereas such levels remain stable in cholinergic and somatostatin interneurons. Thus, we speculate that the ability of cholinergic interneurons to maintain their levels of CREB after excitotoxic lesions is one of the factors determining their protection in Huntington's disease. [source]


Plasticity and ambiguity of the electrophysiological phenotypes of enteric neurons

NEUROGASTROENTEROLOGY & MOTILITY, Issue 9 2009
K. Nurgali
Abstract, Advances in knowledge of enteric neurons electrophysiological characteristics have led to the realisation that the properties of the neurons are dependent on the state of the intestine, the region, the method of recording and the species. Thus, under different experimental conditions, electrophysiological studies cannot provide a reliable signature that identifies the functional type of neuron. In the normal guinea-pig small intestine, taken as a model tissue, neurons can be separated into two electrophysiological groups, S and AH neurons. Combined morphological and physiological studies place several classes of motor and interneurons in the S group, and intrinsic primary afferent neurons in the AH group. There is some evidence for subgroups of S neurons, in which electrophysiological differences are correlated with functional subtypes, but these subgroups have been incompletely investigated. Morphologically characterized Dogiel type II (DII) neurons are recognisable in many species, from mouse to human, but their electrophysiological characteristics are only partly conserved across species or cannot be satisfactorily defined due to technical difficulties. There is a strong need for a comprehensive analysis of channels and currents of S/Dogiel type I neuron subtypes, similar to the comprehensive analysis of AH/DII neurons in the guinea-pig, and similar studies need to be conducted in human and other species. The purpose of this review is to highlight that criteria used for electrophysiological definition of enteric neurons might not be sufficient to distinguish between functional classes of neurons, due to intrinsic properties of neuronal subpopulations, plasticity in pathological conditions and differences in recording techniques. [source]


Pathophysiological Mechanisms for Actions of the Neurotrophins

BRAIN PATHOLOGY, Issue 4 2006
Jeffery L. Twiss
Neurotrophins provide trophic and tropic support for different neuronal subpopulations in the developing and adult nervous systems. Expression of the neurotrophins and their receptors can be altered in several different disease or injury states that impact upon the functions in the central and peripheral nervous systems. The intracellular signals used by the neurotrophins are triggered by ligand binding to the cell surface Trk and p75NTR receptors. In general, signals emanating from Trk receptors support survival, growth and synaptic strengthening, while those emanating from p75NTR induce apoptosis, attenuate growth and weaken synaptic signaling. Mature neurotrophins are the preferred ligand for Trk proteins while p75NTR binds preferentially to the proneurotrophins and serves as a signaling component of the receptor complex for growth inhibitory molecules of central nervous system myelin [ie, myelin-associated glycoprotein (MAG), oligodendrocyte-myelin glycoprotein (OMgP) and Nogo]. The functional antagonism between Trk and p75NTR signaling may significantly impact the pathogenesis of human neurodevelopmental and neurodegenerative diseases and further complicate therapeutic uses of exogenous neurotrophins. The potential for each is discussed in this review. [source]