Neuronal Numbers (neuronal + number)

Distribution by Scientific Domains


Selected Abstracts


Degeneration of pontine mossy fibres during cerebellar development in weaver mutant mice

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 4 2002
Miwako Ozaki
Abstract In weaver mutant mice, substitution of an amino acid residue in the pore region of GIRK2, a subtype of the G-protein-coupled inwardly rectifying K+ channel, changes the properties of the homomeric channel to produce a lethal depolarized state in cerebellar granule cells and dopaminergic neurons in substantia nigra. Degeneration of these types of neurons causes strong ataxia and Parkinsonian phenomena in the mutant mice, respectively. On the other hand, the mutant gene is also expressed in various other brain regions, in which the mutant may have effects on neuronal survival. Among these regions, we focused on the pontine nuclei, the origin of the pontocerebellar mossy fibres, projecting mainly into the central region of the cerebellar cortex. The results of histological analysis showed that by P9 the number of neurons in the nuclei was reduced in the mutant to about one half and by P18 to one third of those in the wild type, whereas until P7 the number were about the same in wild-type and weaver mutant mice. Three-dimensional reconstruction of the nuclei showed a marked reduction in volume and shape of the mutant nuclei, correlating well with the decrease in neuronal number. In addition, DiI (a lipophilic tracer dye) tracing experiments revealed retraction of pontocerebellar mossy fibres from the cerebellar cortex after P5. From these results, we conclude that projecting neurons in the pontine nuclei, as well as cerebellar granule cells and dopaminergic neurons in substantia nigra, strongly degenerate in weaver mutant mice, resulting in elimination of pontocerebellar mossy fibres during cerebellar development. [source]


Functional neuroanatomy of the human pre-Bötzinger complex with particular reference to sudden unexplained perinatal and infant death

NEUROPATHOLOGY, Issue 1 2008
Anna M. Lavezzi
The authors are the first to identify in man the pre-Bötzinger complex, a structure of the brainstem critical for respiratory rhythmogenesis, previously investigated only in rats. The evaluation of the neurokinin 1 receptors and somatostatin immunoreactivity in a total of 63 brains from 25 fetuses, nine newborns and 29 infants, allowed to delineate the anatomic structure and the boundaries of this human neural center in a restricted area of the ventrolateral medulla at the obex level, ventral to the semicompact ambiguus nucleus. The neurons of the pre-Bötzinger complex were roundish in fetuses before 30 gestational weeks and lengthened after birth, embedded in a dendritic system belonging to the reticular formation. Besides, structural and/or functional alterations of the pre-Bötzinger complex were present in a high percentage of sudden deaths (47%), prevalent in late fetal deaths. In particular, different developmental defects (hypoplasia with a decreased neuronal number and/or dendritic hypodevelopment of the reticular formation, abnormal neuronal morphology, immunonegativity of neurotransmitters, and agenesis) were found. The authors suggest that the pre-Bötzinger complex contains a variety of neurons not only involved in respiratory rhythm generation, but more extensively, essential to the control of all vital functions. Sudden death and in particular sudden unexpected fetal death could therefore be ascribed to a selective process when developmental alterations of the pre-Bötzinger complex arise. [source]


Spinal Cord Neuronal Pathology in Multiple Sclerosis

BRAIN PATHOLOGY, Issue 4 2009
Christopher P. Gilmore MRCP
Abstract The objective of this study was to assess neuronal pathology in the spinal cord in multiple sclerosis (MS), both within myelinated and demyelinated tissue. Autopsy material was obtained from 38 MS cases and 21 controls. Transverse sections were taken from three spinal cord levels and stained using Luxol Fast Blue/Cresyl Violet and myelin protein immunohistochemistry. Measurements of neuronal number and size were made for all neurons within the anterior horns of the gray matter. Neurons were classified as motoneurons or interneurons according to size criteria. In comparison with controls, both motoneuron and interneuron number were reduced in MS cases at the upper cervical (interneuron P = 0.0549; motoneuron P = 0.0073) and upper thoracic (interneuron P = 0.0507; motoneuron P = 0.0144), but not the lumbar level. Interneuron cross-sectional area was reduced in MS cases at all levels (upper cervical, P = 0.0000; upper thoracic, P = 0.0002; lumbar, P = 0.0337). Neuronal loss appears to be predominantly related to local gray matter plaques, whereas interneuron atrophy occurs in both myelinated and demyelinated areas. [source]


Morphological alterations in the amygdala and hippocampus of mice during ageing

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2002
Oliver Von Bohlen und Halbach
Abstract Declines in memory function and behavioural dysfunction accompany normal ageing in mammals. However, the cellular and morphological basis of this decline remains largely unknown. It was assumed for a long time that cell losses in the hippocampus accompany ageing. However, recent stereological studies have questioned this finding. In addition, the effect of ageing is largely unknown in another key structure of the memory system, the amygdala. In the present study, we have estimated neuronal density and total neuronal numbers as well as density of fragments of degenerated axons in different hippocampal subfields and amygdaloid nuclei. Comparisons were made among aged (21,26 months old) mice and normal adult littermates (8 months old). No significant volume loss occurs in the hippocampus of aged mice. Small but insignificant reductions in total neuronal numbers were found in the hippocampus and in the amygdaloid nuclei. In contrast to the mild effects of ageing upon neuronal numbers, fragments of degenerated axons were increased in both hippocampus and amygdala of aged mice. These data suggest that ageing does not induce prominent cell loss in the hippocampus or amygdala, but leads to degeneration of axons that innervate these forebrain structures. Thus, mechanisms underlying age-related dysfunction depend on parameters other than neuronal numbers, at least in the hippocampal formation and the amygdala. [source]


Antisense knockdown of the glial glutamate transporter GLT-1 exacerbates hippocampal neuronal damage following traumatic injury to rat brain

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2001
Vemuganti L. Raghavendra Rao
Abstract Traumatic injury to rat brain induced by controlled cortical impact (CCI) results in chronic neuronal death in the hippocampus. In the normal brain, glutamate transporters actively clear the glutamate released synaptically to prevent receptor overactivation and excitotoxicity. Glutamate transporter 1 (GLT-1) is the most abundant and active glutamate transporter, which mediates the bulk of glutamate uptake. CCI injury significantly decreased GLT-1 mRNA (by 49,66%, P < 0.05) and protein (by 29,44%, P < 0.05) levels in the ipsilateral hippocampus, compared with either the respective contralateral hippocampus or the sham-operated control, 24,72 h after the injury. CCI injury in rats infused with GLT-1 antisense oligodeoxynucleotides (ODNs) exacerbated the hippocampal neuronal death and mortality, compared with the GLT-1 sense/random ODN-infused controls. At 7 days after the injury, hippocampal neuronal numbers were significantly lower in the CA1 (reduced by 32%, P < 0.05), CA2 (by 45%, P < 0.01), CA3 (by 68%, P < 0.01) and dentate gyrus (by 31%, P < 0.05) in GLT-1 antisense ODN-infused rats, compared with the GLT-1 sense/random ODN-infused controls. This study suggested a role for GLT-1 dysfunction in promoting the hippocampal neuronal death after traumatic brain injury. [source]


Enlarged cholinergic forebrain neurons and improved spatial learning in p75 knockout mice

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 3 2000
Ursula Greferath
Abstract The p75 low affinity neurotrophin receptor (p75) can induce apoptosis in various neuronal and glial cell types. Because p75 is expressed in the cholinergic neurons of the basal forebrain, p75 knockout mice may be expected to show an increased number of neurons in this region. Previous studies, however, have produced conflicting results, suggesting that genetic background and choice of control mice are critical. To try to clarify the conflicting results from previous reports, we undertook a further study of the basal forebrain in p75 knockout mice, paying particular attention to the use of genetically valid controls. The genetic backgrounds of p75 knockout and control mice used in this study were identical at 95% of loci. There was a small decrease in the number of cholinergic basal forebrain neurons in p75 knockout mice at four months of age compared with controls. This difference was no longer apparent at 15 months due to a reduction in numbers in control mice between the ages of 4 and 15 months. Cholinergic cell size in the basal forebrain was markedly increased in p75 knockout mice compared with controls. Spatial learning performance was consistently better in p75 knockout mice than in controls, and did not show any deterioration with age. The results indicate that p75 exerts a negative influence on the size of cholinergic forebrain neurons, but little effect on neuronal numbers. The markedly better spatial learning suggests that the function, as well as the size, of cholinergic neurons is negatively modulated by p75. [source]


Melanized nigral neuronal numbers in Nigerian and British individuals

MOVEMENT DISORDERS, Issue 8 2006
Uday B. Muthane DM
Abstract The role of genetic and environmental factors in etiopathogenesis of Parkinson's disease (PD) is debated. The prevalence of PD is higher among white than nonwhite populations, yet it is five times higher in nonwhites living in the United States than in Nigeria. We compare counts of melanized nigral neurons between neurologically normal Nigerians and British brains. Neuronal counts were estimated in an age-matched sample of 23 Nigerian and 7 British brains from neurologically normal individuals who had no Lewy bodies and Lewy neurites on ,-synuclein immunostaining. Two investigators blind to age and ethnicity performed counts of melanized neurons in a single 7-,m hemisections showing the substantia nigra pars compacta. No significant difference exits in the number of neurons between the Nigerian and the British subjects (P = 0.1, NS). Differences in melanized nigral neuronal numbers may not explain differences in the prevalence of PD between white and nonwhite populations, suggesting factors other than neuronal numbers contribute to differential susceptibility of black vs. white races to PD. © 2006 Movement Disorder Society [source]