Home About us Contact | |||
Neuronal Activity (neuronal + activity)
Selected AbstractsNeuronal activity in the subthalamic nucleus modulates the release of dopamine in the monkey striatumEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2009Yasushi Shimo Abstract The primate subthalamic nucleus (STN) is commonly seen as a relay nucleus between the external and internal pallidal segments, and as an input station for cortical and thalamic information into the basal ganglia. In rodents, STN activity is also known to influence neuronal activity in the dopaminergic substantia nigra pars compacta (SNc) through inhibitory and excitatory mono- and polysynaptic pathways. Although the anatomical connections between STN and SNc are not entirely the same in primates as in rodents, the electrophysiologic and microdialysis experiments presented here show directly that this functional interaction can also be demonstrated in primates. In three Rhesus monkeys, extracellular recordings from SNc during microinjections into the STN revealed that transient pharmacologic activation of the STN by the acetylcholine receptor agonist carbachol substantially increased burst firing of single nigral neurons. Transient inactivation of the STN with microinjections of the GABA-A receptor agonist muscimol had the opposite effect. While the firing rates of individual SNc neurons changed in response to the activation or inactivation of the STN, these changes were not consistent across the entire population of SNc cells. Permanent lesions of the STN, produced in two animals with the fiber-sparing neurotoxin ibotenic acid, reduced burst firing and firing rates of SNc neurons, and substantially decreased dopamine levels in the primary recipient area of SNc projections, the striatum, as measured with microdialysis. These results suggest that activity in the primate SNc is prominently influenced by neuronal discharge in the STN, which may thus alter dopamine release in the striatum. [source] Depolarization promotes GAD 65-mediated GABA synthesis by a post-translational mechanism in neural stem cell-derived neuronsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2008Nidhi Gakhar-Koppole Abstract Neuronal activity regulates neurogenesis and neuronal differentiation in the mammalian brain. The commencement of neurotransmitter expression establishes the neuronal phenotype and enables the formation of functional connectivity between neurons. In addition, release of neurotransmitters from differentiating neurons may modulate the behaviour of neural precursors. Here, we show that neuronal activity regulates ,-aminobutyric acid (GABA) expression in neurons generated from stem cells of the striatum and adult subventricular zone (SVZ). Differentiating neurons display spontaneous Ca2+ events, which are voltage-gated calcium channel (VGCC) dependent. Depolarization increases both the frequency of Ca2+ transients and the amount of Ca2+ influx in differentiating neurons. We show that depolarization-dependent GABA expression is regulated by the amplitude and not by the frequency of Ca2+ influx. Brief activation of VGCCs leads to Ca2+ influx that in turn promotes a rapid expression of GABA. Depolarization-dependent GABA expression does not require changes in gene expression. Instead, it involves cAMP-dependent protein kinase (PKA) and Ca2+ and phospholipid-dependent protein kinase (PKC) signalling. Activity increases the number of glutamic acid decarboxylase (GAD) 65-immunoreactive neurons in a PKA-dependent manner, without altering the expression of GAD 65, suggesting that depolarization promotes recruitment of GAD 65 by a post-translational mechanism. In line with this, depolarization does not permanently increase the expression of GABA in neurons derived from neural stem cells of the embryonic striatum, cortex and adult SVZ. Thus, neuronal activity does not merely accelerate neuronal differentiation but it may alter the mechanism of GABA synthesis in newly generated neurons. [source] Neuronal activity and neurotrophic factors regulate GAD-65/67 mRNA and protein expression in organotypic cultures of rat visual cortexEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2003Silke Patz Abstract Environmental factors are known to regulate the molecular differentiation of neocortical interneurons. Their class-defining transmitter synthetic enzymes are the glutamic acid decarboxylases (GAD); yet, fairly little is known about the developmental regulation of transcription and translation of the GAD-65/67 isoforms. We have characterized the role of neuronal activity, neurotrophins and afferent systems for GAD-65/67 expression in visual cortex in organotypic cultures (OTC) compared with in vivo in order to identify cortex-intrinsic regulatory mechanisms. Spontaneously active OTC prepared at postnatal day 0 displayed from 10 days in vitro (DIV) onwards 12,14% GAD-65/GAD-67 neurons similar to in vivo. However, GAD-65 mRNA was higher, whereas GAD-67 protein was lower, than in vivo. During the first week neurotrophins increased whereas the Trk receptor inhibitor K252a and MEK inhibitors decreased both GAD mRNAs and proteins. After 10 DIV GAD expression no longer depended on neurotrophin signalling. Activity-deprived OTC revealed only 6% GAD-67 neurons and mRNA and protein were reduced by 50%. GAD-65 mRNA was less reduced, but protein was reduced by half, suggesting translational regulation. Upon recovery of activity GAD mRNAs, cell numbers, and both proteins quickly returned to normal and these ,adult' levels were resistant to late-onset deprivation. In 20 DIV activity-deprived OTC, only neurotrophin 4 increased GAD-65/67 mRNAs, rescued the percentage of GAD-67 neurons and increased both proteins in a TrkB-dependent manner. Activity deprivation had thus shifted the period of neurotrophin sensitivity to older ages. The results suggested neuronal activity as a major regulator differentially affecting transcription and translation of the GAD isoforms. The early presence of neuronal activity promoted the GAD expression in OTC to a neurotrophin-independent state suggesting that neurotrophins play a context-dependent role. [source] Neuroanatomical correlates of the near response: voluntary modulation of accommodation/vergence in the human visual systemEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2000Hans O. Richter Abstract This study identifies brain regions participating in the execution of eye movements for voluntary positive accommodation (VPA) during open-loop vergence conditions. Neuronal activity was estimated by measurement of changes in regional cerebral blood flow (rCBF) with positron emission tomography and 15O-water. Thirteen naive volunteers viewed a checkerboard pattern with their dominant right eye, while a lens interrupted the line of gaze during alternate 1.5 s intervals. Three counterbalanced tasks required central fixation and viewing of a stationary checkerboard pattern: (i) through a 0.0 diopter (D) lens; (ii) through a ,5.0-D lens while avoiding volitional accommodation and permitting blur; and (iii) through a ,5.0-D lens while maintaining maximal focus. The latter required large-amplitude, high-frequency VPA. As an additional control, seven of the subjects viewed passively a digitally blurred checkerboard through a 0.0-D lens as above. Optometric measurements confirmed normal visual acuity and ability to perform the focusing task (VPA). Large-amplitude saccadic eye movements, verified absent by electro-oculography, were inhibited by central fixation. Image averaging across subjects demonstrated multifocal changes in rCBF during VPA: striate and extrastriate visual cortices; superior temporal cortices; and cerebellar cortex and vermis. Decreases in rCBF occurred in the lateral intraparietal area, prefrontal and frontal and/or supplementary eye fields. Analysis of regions of interest in the visual cortex showed systematic and appropriate task dependence of rCBF. Activations may reflect sensorimotor processing along the reflex arc of the accommodation system, while deactivations may indicate inhibition of systems participating in visual search. [source] Noninvasive dynamic imaging of seizures in epileptic patientsHUMAN BRAIN MAPPING, Issue 12 2009Louise Tyvaert Abstract Epileptic seizures are due to abnormal synchronized neuronal discharges. Techniques measuring electrical changes are commonly used to analyze seizures. Neuronal activity can be also defined by concomitant hemodynamic and metabolic changes. Simultaneous electroencephalogram (EEG)-functional MRI (fMRI) measures noninvasively with a high-spatial resolution BOLD changes during seizures in the whole brain. Until now, only a static image representing the whole seizure was provided. We report in 10 focal epilepsy patients a new approach to dynamic imaging of seizures including the BOLD time course of seizures and the identification of brain structures involved in seizure onset and discharge propagation. The first activation was observed in agreement with the expected location of the focus based on clinical and EEG data (three intracranial recordings), thus providing validity to this approach. The BOLD signal preceded ictal EEG changes in two cases. EEG-fMRI may detect changes in smaller and deeper structures than scalp EEG, which can only record activity form superficial cortical areas. This method allowed us to demonstrate that seizure onset zone was limited to one structure, thus supporting the concept of epileptic focus, but that a complex neuronal network was involved during propagation. Deactivations were also found during seizures, usually appearing after the first activation in areas close or distant to the activated regions. Deactivations may correspond to actively inhibited regions or to functional disconnection from normally active regions. This new noninvasive approach should open the study of seizure generation and propagation mechanisms in the whole brain to groups of patients with focal epilepsies. Hum Brain Mapp, 2009. © 2009 Wiley-Liss, Inc. [source] Neuronal activity in the globus pallidus of multiple system atrophy patientsMOVEMENT DISORDERS, Issue 12 2004Luiz C.M. Pereira MD Abstract The pathophysiological changes in neural activity that characterize multiple system atrophy (MSA) are largely unknown. We recorded the activity of pallidal neurons in 3 patients with clinical and radiological features of MSA who underwent unilateral microelectrode-guided pallidotomy for disabling parkinsonism. Findings in these patients were compared with 4 control patients with a clinical diagnosis of Parkinson's disease (PD). The position, firing rates, and firing patterns of single neurons in the pallidal complex were analyzed in both MSA and PD patients. The mean spontaneous firing rate of neurons in the internal segment of the globus pallidus internus (GPii) was significantly lower in MSA than in PD patients. There were no significant differences between MSA and PD patients, however, in firing rates of neurons in the external globus pallidus (GPe) or in the external segment of GPi (GPie). In addition, no significant differences in firing pattern were found between MSA and PD patients. In conclusion, this study has shown that firing rates of neurons in GPii but not in GPie and GPe are different in MSA patients compared with that in PD patients, a finding that may reflect the poor clinical results of pallidotomy reported in patients with MSA. © 2004 Movement Disorder Society [source] Posterior cingulate activation during moral dilemma in adolescentsHUMAN BRAIN MAPPING, Issue 8 2008Jesus Pujol Abstract Neuroimaging research examining correlates of adolescent behavioral maturation has focused largely on issues related to higher cognitive development. Currently few studies have explored neural correlates of emotional reactivity in adolescent groups. In this study, we sought to examine the nature of posterior cingulate activation during situations of moral dilemma in normal adolescents. We focused on this region because of emerging evidence that suggests its role in emotionally self-relevant mental processing. Ten healthy teenagers, aged from 14 to 16 years, underwent three fMRI sequences designed to examine (i) brain responses during moral dilemma; (ii) brain responses during passive viewing of the moral dilemma outcome; and (iii); "deactivation" during a simple cognitive task compared with resting-state activity. Our main finding was that during moral dilemma, all subjects showed significant activation of the posterior cingulate cortex, and more variable activation of the medial frontal cortex and angular gyrus. Interestingly, these findings were replicated in each subject using the passive viewing task, suggesting that the previous pattern was not specific to moral reasoning or decision making. Finally, six of the ten subjects showed deactivation of the same posterior cingulate region during the cognitive task, indicating some commonality of function between posterior cingulate activity during moral dilemmas and rest. We propose that these posterior cingulate changes may relate to basic neuronal activities associated with processing self-relevant emotional stimuli. Given the high single-subject reproducibility of posterior cingulate activations, our findings may contribute to further characterize adolescent emotional reactivity in developmental neuroimaging studies. Hum Brain Mapp, 2008. © 2007 Wiley-Liss, Inc. [source] Disparity of activation onset in sensory cortex from simultaneous auditory and visual stimulation: Differences between perfusion and blood oxygenation level-dependent functional magnetic resonance imagingJOURNAL OF MAGNETIC RESONANCE IMAGING, Issue 2 2005Ho-Ling Liu PhD Abstract Purpose To compare the temporal behaviors of perfusion and blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) in the detection of timing differences between distinct brain areas, and determine potential latency differences between stimulus onset and measurable fMRI signal in sensory cortices. Materials and Methods Inversion recovery (IR) spin-echo echo-planar imaging (EPI) and T2*-weighted gradient-echo EPI sequences were used for perfusion- and BOLD-weighted experiments, respectively. Simultaneous auditory and visual stimulations were employed in an event-related (ER) paradigm. Signal time courses were averaged across 40 repeated trials to evaluate the onset of activation and to determine potential differences of activation latency between auditory and visual cortices and between these scanning methods. Results Temporal differences between visual and auditory areas ranged from 90,200 msec (root-mean-square (RMS) = 134 msec) and from ,80 to 930 msec (RMS = 604 msec) in perfusion and BOLD measurements, respectively. The temporal variability detected with BOLD sequences was larger between subjects and was significantly greater than that in the perfusion response (P < 0.04). The measured time to half maximum (TTHM) values for perfusion imaging (visual, 3260 ± 710 msec; auditory, 3130 ± 700 msec) were earlier than those in BOLD responses (visual, 3770 ± 430 msec; auditory, 3360 ± 460 msec). Conclusion The greater temporal variability between brain areas detected with BOLD could result from differences in the venous contributions to the signal. The results suggest that perfusion methods may provide more accurate timing information of neuronal activities than BOLD-based imaging. J. Magn. Reson. Imaging 2005;21:111,117. © 2005 Wiley-Liss, Inc. [source] Endogenous functional CBV contrast revealed by diffusion weightingNMR IN BIOMEDICINE, Issue 8 2006Todd B. Harshbarger Abstract Functional MRI (fMRI) based on the blood oxygenation level dependent (BOLD) contrast often suffers from a lack of specificity because of the vascular spread of oxygenation changes. It is suggested from the optical imaging and animal fMRI literature that cerebral blood volume (CBV) changes are more closely tied to the smaller vessels. As such, fMRI contrast based on CBV changes will have improved spatial specificity to the neuronal activities as they are immediately adjacent to the smaller vessels. In this paper, an endogenous contrast mechanism based on a diffusion weighting strategy that could detect functional CBV changes is presented. Initially, a theoretical framework is presented to model the functional signal changes as a function of CBV under diffusion weighting, which predicts peak CBV sensitivity at various vessel,tissue mixtures. It was found that a b factor over 1500,s/mm2 would be necessary to achieve dominant CBV contrast. Further, two sets of experimental results are also presented. In the first experiment, diffusion weighting at a set of b factors ranging from 300 to 600,s/mm2 was used. The results indicated that while the positive activation (predominantly BOLD signal) continued to reduce in magnitude and spatial extent, the negative activation (predominantly CBV signal) remained virtually constant with increasing b factors. The second experiment used a b factor of 1600,s/mm2 and showed extensive negative activation in the visual cortex and greatly reduced positive activations compared with images with no diffusion weighting. The time course of negative activation showed a faster time to peak and return to baseline than the positive BOLD activity, consistent with the small vessel origin of the signal changes. These results suggest that appropriate diffusion weighting could be used to measure activation related CBV changes. Copyright © 2006 John Wiley & Sons, Ltd. [source] Improved spatial localization based on flow-moment-nulled and intra-voxel incoherent motion-weighted fMRINMR IN BIOMEDICINE, Issue 3 2003Allen W. Song Abstract Functional MRI signal based on the blood oxygenation level-dependent contrast can reveal brain vascular activities secondary to neuronal activation. It could, however, arise from vascular compartments of all sizes, and in particular, be largely influenced by contributions of large vein origins that are distant from the neuronal activities. Alternative contrasts can be generated based on the cerebral blood flow or volume changes that would provide complementary information to help achieve more accurate localization to the small vessel origins. Recent reports also indicated that apparent diffusion coefficient-based contrast using intravoxel incoherent motion (IVIM) weighting could be used to efficiently detect synchronized signal changes with the functional activities. It was found that this contrast has significant arterial contribution where flow changes are more dominant. In this study, a refined approach was proposed that incorporated the flow-moment-nulling (FMN) strategy to study signal changes from the brain activation. The results were then compared with those from conventional IVIM- and BOLD-weighted acquisitions. It was shown that the activated region using the new acquisition strategy had smaller spatial extent, which was contained within the activated areas from the other two methods. Based on the known characteristics of the conventional IVIM and BOLD contrasts, it was inferred that the FMN,IVIM acquisition had improved selective sensitivity towards smaller vessels where volume changes were prevalent. Therefore, such an acquisition method may provide more specific spatial localization closely coupled to the true neuronal activities. Copyright © 2003 John Wiley & Sons, Ltd. [source] Porous silicon substrates for neurons culturing and bio-photonic sensingPHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 8 2005S. Ben-Tabou de-Leon Abstract In this work we report on culturing of Aplysia neurons and vertebrate cells to porous silicon substrates and on the first steps toward characterizing porous silicon as a biosensor of neural activity. Neurons cultured on porous silicon substrates survived for at least one week showing normal passive membrane properties and generation of action potentials. We have investigated several mechanisms that take advantage of the optical properties of porous silicon for transducing both electrical and chemical neuronal activities into photonic signals. For example, the photoluminescence response to voltage and the reflectivity response to chemical changes were investigated. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Genetic manipulation, whole-cell recordings and functional imaging of the sensorimotor cortex of behaving miceACTA PHYSIOLOGICA, Issue 1 2009C. C. H. Petersen Abstract Sensory processing, sensorimotor integration and motor control are amongst the most basic functions of the brain and yet our understanding of how the underlying neuronal networks operate and contribute to behaviour is very limited. The relative simplicity of the mouse whisker sensorimotor system is helpful for detailed quantitative analyses of motor control and perception during active sensory processing. Recent technical advances now allow the measurement of membrane potential in awake-behaving mice, using whole-cell recordings and voltage-sensitive dye imaging. With these recording techniques, it is possible to directly correlate neuronal activity with behaviour. However, in order to obtain causal evidence for the specific contributions of different neuronal networks to behaviour, it is critical to manipulate the system in a highly controlled manner. Advances in molecular neurobiology, gene delivery and mouse genetics provide techniques capable of layer, column and cell-type specific control of gene expression in the mouse neocortex. Over the next years, we anticipate considerable advances in our understanding of brain function through measuring and manipulating neuronal activity with unprecedented precision to probe the molecular and synaptic mechanisms underlying simple forms of active sensory perception and associative learning. [source] Dopamine modulation of the In vivo acetylcholine response in the Drosophila mushroom bodyDEVELOPMENTAL NEUROBIOLOGY, Issue 11 2009Vitold Tsydzik Abstract Olfactory sensory information in Drosophila is transmitted through antennal lobe projections to Mushroom Body neurons (Kenyon cells) by means of cholinergic synapses. Application of acetylcholine (ACh) and odors produce significant increases in intracellular calcium ([Ca2+]i) in these neurons. Behavioral studies show that Kenyon cell activity is modulated by dopaminergic inputs and this modulation is thought to be the basis for an olfactory conditioned response. However, quantitative assessment of the synaptic inputs to Kenyon cells is currently lacking. To assess neuronal activity under in vivo conditions, we have used the endogenously-expressed camgaroo reporter to measure [Ca2+]i in these neurons. We report here the dose-response relationship of Kenyon cells for ACh and dopamine (DA). Importantly, we also show that simultaneous application of ACh and DA results in a significant decrease in the response to ACh alone. In addition, we show inhibition of the ACh response by cyclic adenosine monophosphate. This is the first quantitative assessment of the effects of these two important transmitters in this system, and it provides an important basis for future analysis of the cellular mechanisms of this well established model for associative olfactory learning. © 2009 Wiley Periodicals, Inc. Develop Neurobiol, 2009 [source] Differential roles of two major brain structures, mushroom bodies and central complex, for Drosophila male courtship behaviorDEVELOPMENTAL NEUROBIOLOGY, Issue 8 2006Takaomi Sakai Abstract Drosophila male courtship is a complex and robust behavior, the potential for which is genetically built into specific neural circuits in the central nervous system. Previous studies using male-female mosaics and the flies with defects in particular brain structures implicated the critical central regions involved in male courtship behavior. However, their acute physiological roles in courtship regulation still largely remain unknown. Using the temperature-sensitive Dynamin mutation, shibirets1, here we demonstrate the significance of two major brain structures, the mushroom bodies and the central complex, in experience-independent aspects of male courtship. We show that blocking of synaptic transmission in the mushroom body intrinsic neurons significantly delays courtship initiation and reduces the courtship activity by shortening the courtship bout length when virgin females are used as a sexual target. Interestingly, however, the same treatment affects neither initiation nor maintenance of courtship toward young males that release courtship-stimulating pheromones different from those of virgin females. In contrast, blocking of synaptic transmission in a central complex substructure, the fan-shaped body, slightly but significantly reduces courtship activity toward both virgin females and young males with little effect on courtship initiation. Taken together, our results indicate that the neuronal activity in the mushroom bodies plays an important role in responding to female-specific sex pheromones that stimulate initiation and maintenance of male courtship behavior, whereas the fan-shaped body neurons are involved in maintenance of male courtship regardless of the nature of courtship-stimulating cues. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006 [source] Regulation of neuronal excitability in Drosophila by constitutively active CaMKIIDEVELOPMENTAL NEUROBIOLOGY, Issue 1 2002Demian Park Abstract The ability of calcium/calmodulin-dependent protein kinase II (CaMKII) to become calcium independent after autophosphorylation makes this enzyme a temporal marker of neuronal activity. Here we show that the calcium-independent form of CaMKII has unique effects on larval viability, locomotion, and neuronal excitability in Drosophila. Expression of constitutively active T287D, but not calcium-dependent T287A, mutant CaMKII in Drosophila neurons resulted in decreased viability, behavioral defects, and failure of action potential propagation. The actions of T287D may be mediated, at least in part, by increased potassium conductances. Expression of T287D CaMKII also stimulated an increase in the number of boutons at the larval neuromuscular junction, but did not affect the mechanics of release. This study defines a role for autophosphorylation of CaMKII in the regulation of multiple neuronal functions including the intrinsic properties of neurons. © 2002 Wiley Periodicals, Inc. J Neurobiol 52: 24,42, 2002 [source] Night-time neuronal activation of Cluster N in a day- and night-migrating songbirdEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 4 2010Manuela Zapka Abstract Magnetic compass orientation in a night-migratory songbird requires that Cluster N, a cluster of forebrain regions, is functional. Cluster N, which receives input from the eyes via the thalamofugal pathway, shows high neuronal activity in night-migrants performing magnetic compass-guided behaviour at night, whereas no activation is observed during the day, and covering up the birds' eyes strongly reduces neuronal activation. These findings suggest that Cluster N processes light-dependent magnetic compass information in night-migrating songbirds. The aim of this study was to test if Cluster N is active during daytime migration. We used behavioural molecular mapping based on ZENK activation to investigate if Cluster N is active in the meadow pipit (Anthus pratensis), a day- and night-migratory species. We found that Cluster N of meadow pipits shows high neuronal activity under dim-light at night, but not under full room-light conditions during the day. These data suggest that, in day- and night-migratory meadow pipits, the light-dependent magnetic compass, which requires an active Cluster N, may only be used during night-time, whereas another magnetosensory mechanism and/or other reference system(s), like the sun or polarized light, may be used as primary orientation cues during the day. [source] High-frequency gamma oscillations coexist with low-frequency gamma oscillations in the rat visual cortex in vitroEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 8 2010Olaleke O. Oke Abstract Synchronization of neuronal activity in the visual cortex at low (30,70 Hz) and high gamma band frequencies (> 70 Hz) has been associated with distinct visual processes, but mechanisms underlying high-frequency gamma oscillations remain unknown. In rat visual cortex slices, kainate and carbachol induce high-frequency gamma oscillations (fast-,; peak frequency , 80 Hz at 37°C) that can coexist with low-frequency gamma oscillations (slow-,; peak frequency , 50 Hz at 37°C) in the same column. Current-source density analysis showed that fast-, was associated with rhythmic current sink-source sequences in layer III and slow-, with rhythmic current sink-source sequences in layer V. Fast-, and slow-, were not phase-locked. Slow-, power fluctuations were unrelated to fast-, power fluctuations, but were modulated by the phase of theta (3,8 Hz) oscillations generated in the deep layers. Fast-, was spatially less coherent than slow-,. Fast-, and slow-, were dependent on ,-aminobutyric acid (GABA)A receptors, ,-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors and gap-junctions, their frequencies were reduced by thiopental and were weakly dependent on cycle amplitude. Fast-, and slow-, power were differentially modulated by thiopental and adenosine A1 receptor blockade, and their frequencies were differentially modulated by N -methyl- d -aspartate (NMDA) receptors, GluK1 subunit-containing receptors and persistent sodium currents. Our data indicate that fast-, and slow-, both depend on and are paced by recurrent inhibition, but have distinct pharmacological modulation profiles. The independent co-existence of fast-, and slow-, allows parallel processing of distinct aspects of vision and visual perception. The visual cortex slice provides a novel in vitro model to study cortical high-frequency gamma oscillations. [source] Origin of the earliest correlated neuronal activity in the chick embryo revealed by optical imaging with voltage-sensitive dyesEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2009Yoko Momose-Sato Abstract Spontaneous correlated neuronal activity during early development spreads like a wave by recruiting a large number of neurons, and is considered to play a fundamental role in neural development. One important and as yet unresolved question is where the activity originates, especially at the earliest stage of wave expression. In other words, which part of the brain differentiates first as a source of the correlated activity, and how does it change as development proceeds? We assessed this issue by examining the spatiotemporal patterns of the depolarization wave, the optically identified primordial correlated activity, using the optical imaging technique with voltage-sensitive dyes. We surveyed the region responsible for the induction of the evoked and spontaneous depolarization waves in chick embryos, and traced its developmental changes. The results showed that the wave initially originated in a restricted area near the obex and was generated by multiple regions at later stages. We suggest that the upper cervical cord/lower medulla near the obex is the kernel that differentiates first as the source of the correlated activity, and that regional and temporal differences in neuronal excitability might underlie the developmental profile of wave generation in early chick embryos. [source] Switching of the transmitters that mediate hindbrain correlated activity in the chick embryoEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2009Hiraku Mochida Abstract Widely propagating correlated neuronal activity is a hallmark of the developing nervous system. The activity is usually mediated by multiple transmitters, and the contribution of gap junctions has also been suggested in several systems. In some structures, such as the retina and spinal cord, it has been shown that the dominant transmitter mediating the correlated wave switches from acetylcholine to glutamate during development, although the functional significance of this phenomenon has not been clarified. An important question is whether such a transmitter switch occurs in other systems, especially in the brain. In the present study, we demonstrate that the major transmitter mediating correlated wave activity in the embryonic chick hindbrain changes from acetylcholine/,-aminobutyric acid (GABA)/glycine to glutamate/GABA as development proceeds. The results show for the first time that the dominant transmitter switches from acetylcholine to glutamate in a region other than the retina and spinal cord. This finding sheds more light on the role of nicotinic acetylcholine receptors in the generation of correlated wave activity, which is considered to regulate the development of the nervous system. [source] Neuronal activity in the subthalamic nucleus modulates the release of dopamine in the monkey striatumEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2009Yasushi Shimo Abstract The primate subthalamic nucleus (STN) is commonly seen as a relay nucleus between the external and internal pallidal segments, and as an input station for cortical and thalamic information into the basal ganglia. In rodents, STN activity is also known to influence neuronal activity in the dopaminergic substantia nigra pars compacta (SNc) through inhibitory and excitatory mono- and polysynaptic pathways. Although the anatomical connections between STN and SNc are not entirely the same in primates as in rodents, the electrophysiologic and microdialysis experiments presented here show directly that this functional interaction can also be demonstrated in primates. In three Rhesus monkeys, extracellular recordings from SNc during microinjections into the STN revealed that transient pharmacologic activation of the STN by the acetylcholine receptor agonist carbachol substantially increased burst firing of single nigral neurons. Transient inactivation of the STN with microinjections of the GABA-A receptor agonist muscimol had the opposite effect. While the firing rates of individual SNc neurons changed in response to the activation or inactivation of the STN, these changes were not consistent across the entire population of SNc cells. Permanent lesions of the STN, produced in two animals with the fiber-sparing neurotoxin ibotenic acid, reduced burst firing and firing rates of SNc neurons, and substantially decreased dopamine levels in the primary recipient area of SNc projections, the striatum, as measured with microdialysis. These results suggest that activity in the primate SNc is prominently influenced by neuronal discharge in the STN, which may thus alter dopamine release in the striatum. [source] Depolarization promotes GAD 65-mediated GABA synthesis by a post-translational mechanism in neural stem cell-derived neuronsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2008Nidhi Gakhar-Koppole Abstract Neuronal activity regulates neurogenesis and neuronal differentiation in the mammalian brain. The commencement of neurotransmitter expression establishes the neuronal phenotype and enables the formation of functional connectivity between neurons. In addition, release of neurotransmitters from differentiating neurons may modulate the behaviour of neural precursors. Here, we show that neuronal activity regulates ,-aminobutyric acid (GABA) expression in neurons generated from stem cells of the striatum and adult subventricular zone (SVZ). Differentiating neurons display spontaneous Ca2+ events, which are voltage-gated calcium channel (VGCC) dependent. Depolarization increases both the frequency of Ca2+ transients and the amount of Ca2+ influx in differentiating neurons. We show that depolarization-dependent GABA expression is regulated by the amplitude and not by the frequency of Ca2+ influx. Brief activation of VGCCs leads to Ca2+ influx that in turn promotes a rapid expression of GABA. Depolarization-dependent GABA expression does not require changes in gene expression. Instead, it involves cAMP-dependent protein kinase (PKA) and Ca2+ and phospholipid-dependent protein kinase (PKC) signalling. Activity increases the number of glutamic acid decarboxylase (GAD) 65-immunoreactive neurons in a PKA-dependent manner, without altering the expression of GAD 65, suggesting that depolarization promotes recruitment of GAD 65 by a post-translational mechanism. In line with this, depolarization does not permanently increase the expression of GABA in neurons derived from neural stem cells of the embryonic striatum, cortex and adult SVZ. Thus, neuronal activity does not merely accelerate neuronal differentiation but it may alter the mechanism of GABA synthesis in newly generated neurons. [source] Prior pallidotomy reduces and modifies neuronal activity in the subthalamic nucleus of Parkinson's disease patientsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2008A. Zaidel Abstract Parkinson's disease (PD) patients with prior radio-frequency lesions in the internal segment of the globus pallidus (GPi, pallidotomy), whose symptoms have deteriorated, may be candidates for further invasive treatment such as subthalamic deep brain stimulation (STN DBS). Six patients with prior pallidotomy (five unilaterally; one bilaterally) underwent bilateral STN DBS. The microelectrode recordings (MERs, used intraoperatively for STN verification), ipsilateral and contralateral to pallidotomy, and MERs from 11 matched PD patients who underwent bilateral STN DBS without prior pallidotomy were compared. For each trajectory, average, variance and mean successive difference (MSD, a measure of irregularity) of the root mean square (RMS) of the STN MER were calculated. The RMS in trajectories ipsilateral to pallidotomy showed significant reduction of the mean average and MSD of STN activity when compared with trajectories from patients without prior pallidotomy. The RMS parameters contralateral to pallidotomy tend to lie between those ipsilateral to pallidotomy and those without prior pallidotomy. The average STN power spectral density of oscillatory activity was notably lower ipsilateral to pallidotomy than contralateral, or without prior pallidotomy. The finding that pallidotomy reduces STN activity and changes firing characteristics, in conjunction with the effectiveness of STN DBS despite prior pallidotomy, calls for reappraisal and modification of the current model of the basal ganglia (BG) cortical network. It highlights the critical role of direct projections from the BG to brain-stem structures and suggests a possible GPi,STN reciprocal positive-feedback mechanism. [source] Enhanced synaptic excitation,inhibition ratio in hippocampal interneurons of rats with temporal lobe epilepsyEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2007F. Stief Abstract A common feature of all epileptic syndromes is the repetitive occurrence of pathological patterns of synchronous neuronal activity, usually combined with increased neuronal discharge rates. Inhibitory interneurons of the hippocampal formation control both neuronal synchronization as well as the global level of activity and are therefore of crucial importance for epilepsy. Recent evidence suggests that changes in synaptic inhibition during temporal lobe epilepsy are rather specific, resulting from selective death or alteration of interneurons in specific hippocampal layers. Hence, epilepsy-induced changes have to be analysed separately for different types of interneurons. Here, we focused on GABAergic neurons located at the border between stratum radiatum and stratum lacunosum-moleculare of hippocampal area CA1 (SRL interneurons), which are included in feedforward inhibitory circuits. In chronically epileptic rats at 6,8 months after pilocarpine-induced status epilepticus, frequencies of spontaneous and miniature inhibitory postsynaptic currents were reduced, yielding an almost three-fold increase in excitation,inhibition ratio. Consistently, action potential frequency of SRL interneurons was about two-fold enhanced. Morphological alterations of the interneurons indicate that these functional changes were accompanied by remodelling of the local network, probably resulting in a loss of functional inhibitory synapses without conceivable cell death. Our data indicate a strong increase in activity of interneurons in dendritic layers of the chronically epileptic CA1 region. This alteration may enhance feedforward inhibition and rhythmogenesis and , together with specific changes in other interneurons , contribute to seizure susceptibility and pathological synchronization. [source] Cocaine-induced locomotor activity and Fos expression in nucleus accumbens are sensitized for 6 months after repeated cocaine administration outside the home cageEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 3 2006Bruce T. Hope Abstract Induction of the immediate early gene protein product Fos has been used extensively to assess neural activation in the striatum after repeated cocaine administration to rats in their home cages but rarely after repeated administration outside the home cage, which produces more robust locomotor sensitization. In the present study, we found cocaine-induced Fos expression in nucleus accumbens, but not caudate-putamen, was enhanced 1 and 6 months after repeated drug administration in locomotor activity chambers. Double-labelling of Fos protein and enkephalin mRNA indicated that Fos expression in nucleus accumbens was enhanced in enkephalin-positive, but not enkephalin-negative, medium spiny neurons. In contrast, cocaine-induced Fos expression was absent altogether in nucleus accumbens and unaltered in caudate-putamen 1 month after repeated cocaine administration in the home cage. As cocaine-induced locomotor activity was also enhanced 1 and 6 months after repeated cocaine administration in locomotor activity chambers, we wanted to confirm that neuronal activity in nucleus accumbens mediates cocaine-induced locomotor activity using our particular treatment regimen. Bilateral infusions of the GABA agonists baclofen and muscimol (1 µg/side) into nucleus accumbens of sensitized rats blocked cocaine-induced Fos expression and locomotor activity. Thus, while neuronal activity in both D1- and D2-type neurons in nucleus accumbens can mediate acute cocaine-induced locomotor activity, the enhanced activation of enkephalinergic D2-type neurons suggests that these latter neurons mediate the enhancement of cocaine-induced locomotor activity for up to 6 months after repeated drug administration outside the home cage. [source] Optical imaging of medullary ventral respiratory network during eupnea and gasping In situEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2006Jeffrey T. Potts Abstract In severe hypoxia, respiratory rhythm is shifted from an eupneic, ramp-like motor pattern to gasping characterized by a decrementing pattern of phrenic motor activity. However, it is not known whether hypoxia reconfigures the spatiotemporal organization of the central respiratory rhythm generator. Using the in situ arterially perfused juvenile rat preparation, we investigated whether the shift from eupnea to gasping was associated with a reconfiguration of the spatiotemporal pattern of respiratory neuronal activity in the ventral medullary respiratory network. Optical images of medullary respiratory network activity were obtained from male rats (4,6 weeks of age). Part of the medullary network was stained with a voltage-sensitive dye (di-2 ANEPEQ) centred both within, and adjacent to, the pre-Bötzinger complex (Pre-BötC). During eupnea, optical signals initially increased prior to the onset of phrenic activity and progressively intensified during the inspiratory phase peaking at the end of inspiration. During early expiration, fluorescence was also detected and slowly declined throughout this phase. In contrast, hypoxia shifted the respiratory motor pattern from eupnea to gasping and optical signals were restricted to inspiration only. Areas active during gasping showed fluorescence that was more intensive and covered a larger region of the rostral ventrolateral medulla compared to eupnea. Regions exhibiting peak inspiratory fluorescence did not coincide spatially during eupnea and gasping. Moreover, there was a recruitment of additional medullary regions during gasping that were not active during eupnea. These results provide novel evidence that the shift in respiratory motor pattern from eupnea to gasping appears to be associated with a reconfiguration of the central respiratory rhythm generator characterized by changes in its spatiotemporal organization. [source] Diurnal regulation of the gastrin-releasing peptide receptor in the mouse circadian clockEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 4 2006Ilia N. Karatsoreos Abstract In mammals, circadian rhythms are generated by the suprachiasmatic nuclei (SCN) of the hypothalamus. SCN neurons are heterogeneous and can be classified according to their function, anatomical connections, morphology and/or peptidergic identity. We focus here on gastrin-releasing peptide- (GRP) and on GRP receptor- (GRPr) expressing cells of the SCN. Pharmacological application of GRP in vivo or in vitro can shift the phase of circadian rhythms, and GRPr-deficient mice show blunted photic phase shifting. Given the in vivo and in vitro effects of GRP on circadian behavior and on SCN neuronal activity, we investigated whether the GRPr might be under circadian and/or diurnal control. Using in situ hybridization and autoradiographic receptor binding, we localized the GRPr in the mouse SCN and determined that GRP binding varies with time of day in animals housed in a light,dark cycle but not in conditions of constant darkness. The latter results were confirmed with Western blots of SCN tissue. Together, the present findings reveal that changes in GRPr are light driven and not endogenously organized. Diurnal variation in GRPr activity probably underlies intra-SCN signaling important for entrainment and phase shifting. [source] Time-sensitive enhancement of motor learning with the less-affected forelimb after unilateral sensorimotor cortex lesions in ratsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 8 2005J. Edward Hsu Abstract Unilateral damage to the forelimb region of the sensorimotor cortex (FLsmc) results in time-dependent changes in neuronal activity, structure and connectivity in the contralateral motor cortex of adult rats. These changes have been linked to facilitation of motor skill learning in the less-affected/ipsilesional forelimb, which is likely to promote its use in the development of behavioral compensation. The goal of this study was to determine whether an early post-lesion-sensitive time period exists for this enhanced learning and whether it is linked to synaptogenesis in the contralesional motor cortex. Rats were trained for 21 days on a skilled reaching task with the ipsilesional forelimb beginning 4 or 25 days after unilateral ischemic (endothelin-1-induced) FLsmc lesions or sham operations. As found previously, reaching performance was significantly enhanced in rats trained early post-lesion compared with sham-operates. In rats trained later post-lesion, performance was neither significantly different from time-matched sham-operates nor strikingly different from animals trained earlier post-lesion. In layer V of the contralesional motor cortex, stereological methods for light and electron microscopy revealed significantly more total, multisynaptic bouton and perforated synapses per neuron compared with sham-operates, but there were no significant differences between early- and late-trained lesion groups. Thus, there appears to be a sensitive time window for the maximal expression of the enhanced learning capacity of the less-affected forelimb but this window is broadly, rather than sharply, defined. These results indicate that relatively long-lasting lesion-induced neuronal changes are likely to underlie the facilitation of learning with the less-affected forelimb. [source] Offer and demand: proliferation and survival of neurons in the dentate gyrusEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2005Konrad Lehmann Abstract The proliferation and survival of new cells in the dentate gyrus of mammals is a complex process that is subject to numerous influences, presenting a confusing picture. We suggest regarding these processes on the level of small networks, which can be simulated in silico and which illustrate in a nutshell the influences that proliferating cells exert on plasticity and the conditions they require for survival. Beyond the insights gained by this consideration, we review the available literature on factors that regulate cell proliferation and neurogenesis in the dentate gyrus in vivo. It turns out that the rate of cell proliferation and excitatory afferents via the perforant path interactively determine cell survival, such that the best network stability is achieved when either of the two is increased whereas concurrent activation of the two factors lowers cell survival rates. Consequently, the mitotic activity is regulated by systemic parameters in compliance with the hippocampal network's requirements. The resulting neurogenesis, in contrast, depends on local factors, i.e. the activity flow within the network. In the process of cell differentiation and survival, each cell's spectrum of afferent and efferent connections decides whether it will integrate into the network or undergo apoptosis, and it is the current neuronal activity which determines the synaptic spectrum. We believe that this framework will help explain the biology of dentate cell proliferation and provide a basis for future research hypotheses. [source] The actin-binding protein profilin I is localized at synaptic sites in an activity-regulated mannerEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2005Henrike Neuhoff Abstract Morphological changes at synaptic specializations have been implicated in regulating synaptic strength. Actin turnover at dendritic spines is regulated by neuronal activity and contributes to spine size, shape and motility. The reorganization of actin filaments requires profilins, which stimulate actin polymerization. Neurons express two independent gene products , profilin I and profilin II. A role for profilin II in activity-dependent mechanisms at spine synapses has recently been described. Although profilin I interacts with synaptic proteins, little is known about its cellular and subcellular localization in neurons. Here, we investigated the subcellular distribution of this protein in brain neurons as well as in hippocampal cultures. Our results indicate that the expression of profilin I varies in different brain regions. Thus, in cerebral cortex and hippocampus profilin I immunostaining was associated predominantly with dendrites and was present in a subset of dendritic spines. In contrast, profilin I in cerebellum was associated primarily with presynaptic structures. Profilin I immunoreactivity was partially colocalized with the synaptic molecules synaptophysin, PSD-95 and gephyrin in cultured hippocampal neurons, indicating that profilin I is present in only a subset of synapses. At dendritic spine structures, profilin I was found primarily in protrusions, which were in apposition to presynaptic terminal boutons. Remarkably, depolarization with KCl caused a moderate but significant increase in the number of synapses containing profilin I. These results show that profilin I can be present at both pre- and postsynaptic sites and suggest a role for this actin-binding protein in activity-dependent remodelling of synaptic structure. [source] Quantitative effects produced by modifications of neuronal activity on the size of GABAA receptor clusters in hippocampal slice culturesEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2004Serge Marty Abstract The number and strength of GABAergic synapses needs to be precisely adjusted for adequate control of excitatory activity. We investigated to what extent the size of GABAA receptor clusters at inhibitory synapses is under the regulation of neuronal activity. Slices from P7 rat hippocampus were cultured for 13 days in the presence of bicuculline or 4-aminopyridine (4-AP) to increase neuronal activity, or DNQX to decrease activity. The changes provoked by these treatments on clusters immunoreactive for the ,1 and ,2 subunits of the GABAA receptor or gephyrin were quantitatively evaluated. While an increase in activity augmented the density of these clusters, a decrease in activity provoked, in contrast, a decrease in their density. An inverse regulation was observed for the size of individual clusters. Bicuculline and 4-AP decreased whilst DNQX increased the mean size of the clusters. When the pharmacological treatments were applied for 2 days instead of 2 weeks, no effects on the size of the clusters were observed. The variations in the mean size of individual clusters were mainly due to changes in the number of small clusters. Finally, a regulation of the size of GABAA receptor clusters occurred during development in vivo, with a decrease of the mean size of the clusters between P7 and P21. This physiological change was also the result of an increase in the number of small clusters. These results indicate that neuronal activity regulates the mean size of GABAA receptor- and gephyrin-immunoreactive clusters by modifying specifically the number of synapses with small clusters of receptors. [source] |