Home About us Contact | |||
Neuron Activity (neuron + activity)
Selected AbstractsRole of GABAA inhibition in modulation of pyramidal tract neuron activity during postural correctionsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 5 2007Zinaida A. Tamarova Abstract In a previous study we demonstrated that the activity of pyramidal tract neurons (PTNs) of the motor cortex is modulated in relation to postural corrections evoked by periodical tilts of the animal. The modulation included an increase in activity in one phase of the tilt cycle and a decrease in the other phase. It is known that the motor cortex contains a large population of inhibitory GABAergic neurons. How do these neurons participate in periodic modulation of PTNs? The goal of this study was to investigate the role of GABAA inhibitory neurons of the motor cortex in the modulation of postural-related PTN activity. Using extracellular electrodes with attached micropipettes, we recorded the activity of PTNs in cats maintaining balance on a tilting platform both before and after iontophoretic application of the GABAA receptor antagonists gabazine or bicuculline. The tilt-related activity of 93% of PTNs was affected by GABAA receptor antagonists. In 88% of cells, peak activity increased by 75 ± 50% (mean ± SD). In contrast, the trough activity changed by a much smaller value and almost as many neurons showed a decrease as showed an increase. In 73% of the neurons, the phase position of the peak activity did not change or changed by no more than 0.1 of a cycle. We conclude that the GABAergic system of the motor cortex reduces the posture-related responses of PTNs but has little role in determining their response timing. [source] Conditional involvement of striatal serotonin3 receptors in the control of in vivo dopamine outflow in the rat striatumEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 4 2003Grégory Porras Abstract Serotonin3 (5-HT3) receptors can affect motor control through an interaction with the nigrostriatal dopamine (DA) neurons, but the neurochemical basis for this interaction remains controversial. In this study, using in vivo microdialysis, we assessed the hypothesis that 5-HT3 receptor-dependent control of striatal DA release is conditioned by the degree of DA and/or 5-HT neuron activity and the means of DA release (impulse-dependent vs. impulse-independent). The different DA-releasing effects of morphine (1 and 10 mg/kg), haloperidol (0.01 mg/kg), amphetamine (1 and 2.5 mg/kg), and cocaine (10 and 20 mg/kg) were studied in the striatum of freely moving rats administered selective 5-HT3 antagonists ondansetron (0.1 mg/kg) or MDL 72222 (0.03 mg/kg). Neither of the 5-HT3 antagonists modified basal DA release by itself. Pretreatment with ondansetron or MDL 72222 reduced the increase in striatal DA release induced by 10 mg/kg morphine but not by 1 mg/kg morphine, haloperidol, amphetamine or cocaine. The effect of 10 mg/kg morphine was also prevented by intrastriatal ondansetron (1 µm) administration. Reverse dialysis with ondansetron also reduced the increase in DA release induced by the combination of haloperidol and the 5-HT reuptake inhibitor citalopram (1 mg/kg). Considering the different DA and 5-HT-releasing properties of the drugs used, our results demonstrate that striatal 5-HT3 receptors control selectively the depolarization-dependent exocytosis of DA only when central DA and 5-HT tones are increased concomitantly. [source] Differential galanin receptor-1 and galanin expression by 5-HT neurons in dorsal raphé nucleus of rat and mouse: evidence for species-dependent modulation of serotonin transmissionEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 3 2003Jari A. Larm Abstract Galanin and galanin receptors are widely expressed by neurons in rat brain that either synthesize/release and/or are responsive to, classical transmitters such as ,-aminobutyric acid, acetylcholine, noradrenaline, histamine, dopamine and serotonin (5-hydroxytryptamine, 5-HT). The dorsal raphé nucleus (DRN) contains , 50% of the 5-HT neurons in the rat brain and a high percentage of these cells coexpress galanin and are responsive to exogenous galanin in vitro. However, the precise identity of the galanin receptor(s) present on these 5-HT neurons has not been previously established. Thus, the current study used a polyclonal antibody for the galanin receptor-1 (GalR1) to examine the possible expression of this receptor within the DRN of the rat and for comparative purposes also in the mouse. In the rat, intense GalR1-immunoreactivity (IR) was detected in a substantial population of 5-HT-immunoreactive neurons in the DRN, with prominent receptor immunostaining associated with soma and proximal dendrites. GalR1-IR was also observed in many cells within the adjacent median raphé nucleus. In mouse DRN, neurons exhibited similar levels and distribution of 5-HT-IR to that in the rat, but GalR1-IR was undetectable. Consistent with this, galanin and GalR1 mRNA were also undetectable in mouse DRN by in situ hybridization histochemistry, despite the detection of GalR1 mRNA (and GalR1-IR) in adjacent cells in the periaqueductal grey and other midbrain areas. 5-HT neuron activity in the DRN is primarily regulated via 5-HT1A autoreceptors, via inhibition of adenylate cyclase and activation of inward-rectifying K+ channels. Notably, the GalR1 receptor subtype signals via identical mechanisms and our findings establish that galanin modulates 5-HT neuron activity in the DRN of the rat via GalR1 (auto)receptors. However, these studies also identify important species differences in the relationship between midbrain galanin and 5-HT systems, which should prompt further investigations in relation to comparative human neurochemistry and which have implications for studies of animal models of relevant neurological conditions such as stress, anxiety and depression. [source] Involvement of adenylate cyclase and tyrosine kinase signaling pathways in response of crayfish stretch receptor neuron and satellite glia cell to photodynamic treatmentGLIA, Issue 3 2005Anatoly Uzdensky Abstract Neuroglial interactions are most profound during development or damage of nerve tissue. We studied the responses of crayfish stretch receptor neurons (SRN) and satellite glial cells to photosensitization with sulfonated aluminum phthalocyanine Photosens. Although Photosens was localized mainly in the glial envelope, neurons were very sensitive to photodynamic treatment. Photosensitization gradually inhibited and then abolished neuron activity. Neuronal and glial nuclei shrank. Some neurons and glial cells lost the integrity of the plasma membrane and died through necrosis after the treatment. The nuclei of other glial cells but not neurons become fragmented, indicating apoptosis. The number of glial nuclei around neuron soma increased, probably indicating proliferation for enhanced neuron protection. Adenylate cyclase (AC) inhibition by MDL-12330A, or tyrosine kinase (TK) inhibition by genistein, shortened neuron lifetime, whereas AC activation by forskolin or protein tyrosine phosphatases (PTP) inhibition by sodium orthovanadate prolonged neuronal activity. Therefore, cAMP and phosphotyrosines produced by AC and TK, respectively, protected SRN against photoinactivation. AC inhibition reduced photodamage of the plasma membrane and subsequent necrosis in neuronal and glial cells. AC activation prevented apoptosis in photosensitized glial cells and stimulated glial proliferation. TK inhibition protected neurons but not glia against photoinduced membrane permeabilization and subsequent necrosis whereas PTP inhibition more strongly protected glial cells. Therefore, both signaling pathways involving cAMP and phosphotyrosines might contribute to the maintenance of neuronal activity and the integrity of the neuronal and glial plasma membranes. Adenylate cyclase but not phosphotyrosine signaling pathways modulated glial apoptosis and proliferation under photooxidative stress. © 2004 Wiley-Liss, Inc. [source] Single neuron burst firing in the human hippocampus during sleepHIPPOCAMPUS, Issue 6 2002Richard J. Staba Abstract Although there are numerous non-primate studies of the single neuron correlates of sleep-related hippocampal EEG patterns, very limited hippocampal neuronal data are available for correlation with human sleep. We recorded human hippocampal single neuron activity in subjects implanted with depth electrodes required for medical diagnosis and quantitatively evaluated discharge activity from each neuron during episodes of wakefulness (Aw), combined stage 3 and 4 slow-wave sleep (SWS), and rapid eye movement (REM) sleep. The mean firing rate of the population of single neurons was significantly higher during SWS and Aw compared with REM sleep (p = 0.002; p < 0.0001). In addition, burst firing was significantly greater during SWS compared with Aw (p = 0.001) and REM sleep (p < 0.0001). The synchronized state of SWS and associated high-frequency burst discharge found in human hippocampus may subserve functions similar to those reported in non-primate hippocampus that require burst firing to induce synaptic modifications in hippocampal circuitry and in hippocampal projections to neocortical targets that participate in memory consolidation. Hippocampus 2002;12:724,734. © 2002 Wiley-Liss, Inc. [source] Frontal cortical afferents facilitate striatal nitric oxide transmission in vivo via a NMDA receptor and neuronal NOS-dependent mechanismJOURNAL OF NEUROCHEMISTRY, Issue 3 2007Stephen Sammut Abstract Striatal nitric oxide (NO) signaling plays a critical role in modulating neural processing and motor behavior. Nitrergic interneurons receive synaptic inputs from corticostriatal neurons and are activated via ionotropic glutamate receptor stimulation. However, the afferent regulation of NO signaling is poorly characterized. The role of frontal cortical afferents in regulating NO transmission was assessed in anesthetized rats using amperometric microsensor measurements of NO efflux and local field potential recordings. Low frequency (3 Hz) electrical stimulation of the ipsilateral cortex did not consistently evoke detectable changes in striatal NO efflux. In contrast, train stimulation (30 Hz) of frontal cortical afferents facilitated NO efflux in a stimulus intensity-dependent manner. Nitric oxide efflux evoked by train stimulation was transient, reproducible over time, and attenuated by systemic administration of either the NMDA receptor antagonist MK-801 or the neuronal NO synthase inhibitors 7-nitroindazole and NG -propyl- l -arginine. The interaction between NO efflux evoked via train stimulation and local striatal neuron activity was assessed using dual microsensor and local field potential recordings carried out concurrently in the contralateral and ipsilateral striatum, respectively. Systemic administration of the non-specific NO synthase inhibitor methylene blue attenuated both evoked NO efflux and the peak oscillation frequency (within the delta band) of local field potentials recorded immediately after train stimulation. Taken together, these observations indicate that feed-forward activation of neuronal NO signaling by phasic activation of frontal cortical afferents facilitates the synchronization of glutamate driven oscillations in striatal neurons. Thus, NO signaling may act to amplify coherent corticostriatal transmission and synchronize striatal output. [source] Stimulatory and entraining effect of melatonin on tuberoinfundibular dopaminergic neuron activity and inhibition on prolactin secretionJOURNAL OF PINEAL RESEARCH, Issue 4 2000Yeh-Shiu Chu The aims of the present study were to determine if melatonin exerts an effect on prolactin (PRL) secretion via the tuberoinfundibular dopaminergic (TIDA) neurons and if endogenous or exogenous melatonin has an entraining effect on the rhythmic changes of TIDA neuronal activity and PRL secretion. Melatonin given in the morning (10:00 h), dose- (0.01,1 mg/kg, ip) and time- (at 15 and 60 min, but not at 30 min) dependently stimulated TIDA neuronal activity in ovariectomized (OVX), estrogen-treated rats as determined by 3,4-dihydroxyphenylacetic acid (DOPAC) levels in the median eminence (ME). Serum PRL was concurrently inhibited by the injection. Melatonin administered in the afternoon (15:00 h) was even more effective in stimulating the lowered TIDA neuronal activity and inhibiting the increased PRL level than that given in the morning (10:00 h). S-20098, a melatonin agonist was also effective in stimulating the TIDA neurons. In contrast, S-20928, a putative melatonin antagonist, while it had no effect by itself, blocked the effect of S-20098. Although S-20928 failed to prevent melatonin's effect on ME DOPAC levels, six interspaced injections of S-20928, from 18:00 to 01:30 h, significantly blocked the increase of ME DOPAC levels at 03:00 h, indicating that the endogenous melatonin may play a role. We further used rats that received daily injection of melatonin (1 mg/kg, ip) at 18:00 h for 10 days and found that the injection augmented basal TIDA neuronal activity at 11:00 h and blunted the afternoon PRL surge. In all, melatonin can have an inhibitory effect on PRL secretion by stimulating the TIDA neurons, and it may help to entrain the circadian rhythms of both TIDA neuronal activity and PRL secretion. [source] Acute and Chronic Ethanol Modulate Dopamine D2-Subtype Receptor Responses in Ventral Tegmental Area GABA NeuronsALCOHOLISM, Issue 5 2009Kimberly H. Ludlow Background:, Ventral tegmental area (VTA) ,-aminobutyric acid (GABA) neurons appear to be critical substrates underlying the acute and chronic effects of ethanol on dopamine (DA) neurotransmission in the mesocorticolimbic system implicated in drug reward. VTA GABA neuron firing rate is reduced by acute ethanol and enhanced by DA via D2 receptor activation. The objective of this study was to evaluate the role of D2 receptors in acute ethanol inhibition of VTA GABA neuron activity, as well as the adaptation of D2 receptors by chronic ethanol consumption. Methods:, Using electrophysiological methods, we evaluated the effects of intraperitoneal ethanol on DA activation of VTA GABA neurons, the effects of DA antagonists on ethanol inhibition of their firing rate, as well as adaptations in firing rate following chronic ethanol consumption. Using single cell quantitative RT-polymerase chain reaction (PCR), we evaluated the expression of VTA GABA neuron D2 receptors in rats consuming ethanol versus pair-fed controls. Results:, In acute ethanol studies, microelectrophoretic activation of VTA GABA neurons by DA was inhibited by acute intraperitoneal ethanol, and intravenous administration of the D2 antagonist eticlopride blocked ethanol suppression of VTA GABA neuron firing rate. In chronic ethanol studies, while there were no signs of withdrawal at 24 hours, or significant adaptation in firing rate or response to acute ethanol, there was a significant down-regulation in the expression of D2 receptors in ethanol-consuming rats versus pair-fed controls. Conclusions:, Inhibition of DA activation of VTA GABA neuron firing rate by ethanol, as well as eticlopride block of ethanol inhibition of VTA GABA neuron firing rate, suggests an interaction between ethanol and DA neurotransmission via D2 receptors, perhaps via enhanced DA release in the VTA subsequent to ethanol inhibition of GABA neurons. Down-regulation of VTA GABA neuron D2 receptors by chronic ethanol might result from persistent DA release onto GABA neurons. [source] Competing Presynaptic and Postsynaptic Effects of Ethanol on Cerebellar Purkinje NeuronsALCOHOLISM, Issue 8 2006Zhen Ming Background: Ethanol has actions on cerebellar Purkinje neurons that can result either in a net excitation or in inhibition of neuronal activity. The present study examines the interplay of presynaptic and postsynaptic mechanisms to determine the net effect of ethanol on the neuronal firing rate of cerebellar Purkinje neurons. Methods: Whole-cell voltage-clamp recording of miniature inhibitory postsynaptic currents (mIPSCs) from Purkinje neurons in cerebellar slices was used to examine the effect of ethanol on presynapticsynaptic release of , -aminobutyric acid (GABA) and glutamate. Extracellular recording was used to examine the net action of both presynaptic and postsynaptic effects of ethanol on the firing rate of Purkinje neurons. Results: Under whole-cell voltage clamp, the frequency of bicuculline-sensitive miniature postsynaptic currents (mIPSCs) was increased dose-dependently by 25, 50, and 100 mM ethanol without any change in amplitude or decay time. Despite this evidence of increased release of GABA by ethanol, application of 50 mM ethanol caused an increase in firing in some neurons and a decrease in firing in others with a nonrandom distribution. When both glutamatergic and GABAergic influences were removed by simultaneous application of 6-cyano-7-nitroquinoxaline-2,3-dione and picrotoxin, respectively, ethanol caused only an increase in firing rate. Conclusions: These data are consistent with a dual action of ethanol on cerebellar Purkinje neuron activity. Specifically, ethanol acts presynaptically to increase inhibition by release of GABA, while simultaneously acting postsynaptically to increase intrinsic excitatory drive. [source] Lactobacillus reuteri ingestion and IKCa channel blockade have similar effects on rat colon motility and myenteric neuronesNEUROGASTROENTEROLOGY & MOTILITY, Issue 1 2010B. Wang Abstract, Background, We have previously shown that ingestion of Lactobacillus reuteri may modulate colonic enteric neuron activity but with unknown effects on colon motility. The aim of the present report was to elucidate the neuronal mechanisms of action of the probiotic by comparing the effects on motility of L. reuteri ingestion with blockade of a specific ionic current in enteric neurons. Methods, We have used intraluminal pressure recordings from ex vivo rat colon segments and whole cell patch clamp recordings from neurons of rat longitudinal muscle myenteric plexus preparations to investigate the effects of L. reuteri and TRAM-34 on colon motility and neurophysiology. The effects of daily feeding of 109L. reuteri bacteria or acute application of TRAM-34 on threshold fluid filling pressure or pulse pressure was measured. Key Results,Lactobacillus reuteri increased intraluminal fluid filling pressure thresholds for evoking pressure pulses by 51% from 0.47 ± 0.17 hPa; the probiotic also decreased the pulse pressure amplitudes, but not frequency, by 18% from 3.91 ± 0.52 hPa. The intermediate conductance calcium-dependent potassium (IKCa) channel blocker TRAM-34 (3 ,mol L,1) increased filling threshold pressure by 43% from 0.52 ± 0.22 hPa and reduced pulse pressure amplitude by 40% from 2.63 ± 1.11 hPa; contraction frequency was unaltered. TRAM-34 (3 ,mol L,1) reduced membrane polarization, leak conductance and the slow afterhyperpolarization current in 16/16 myenteric rat colon AH cells but 19/19 S cells were unaffected. Conclusions & Inferences, The present results are consistent with L. reuteri enhancing tonic inhibition of colon contractile activity by acting via the IKCa channel current in AH cells. [source] Rapid actions of oestrogen on gonadotropin-releasing hormone neurons; from fantasy to physiology?THE JOURNAL OF PHYSIOLOGY, Issue 21 2009Allan E. Herbison Oestradiol (E2) exerts critical homeostatic feedback effects upon gonadotropin-releasing hormone (GnRH) neurons to maintain fertility. In the female, E2 has both negative and positive feedback actions to suppress and stimulate GnRH neuron activity at different times of the ovarian cycle. This review summarizes reported rapid E2 effects on native embryonic and adult GnRH neurons and attempts to put them into a physiological perspective. Oestrogen has been shown to rapidly modulate multiple processes in embryonic and adult GnRH neurons including intracellular calcium levels, electrical activity and specific second messenger pathways, as well as GnRH secretion itself. Evaluation of in vivo data suggests that there is no essential role for rapid E2 actions in the positive feedback mechanism but that they may comprise part of the negative feedback pathway. Adult GnRH neurons are only likely to be exposed to E2 from the gonads via the circulation with appropriate physiological E2 concentrations in the rodent being 10,50 pm for negative feedback ranging up to 400 pm for positive feedback. Although most studies to date have examined the effects of supraphysiological E2 levels on GnRH neurons, there is accumulating evidence that rapid E2 actions may have a physiological role in suppressing GnRH neuron activity. [source] Attenuation of acute and chronic effects of morphine by the imidazoline receptor ligand 2-(2-benzofuranyl)-2-imidazoline in rat locus coeruleus neuronsBRITISH JOURNAL OF PHARMACOLOGY, Issue 3 2003Eduardo Ruiz-Durántez The aim of this study was to determine if 2-(2-benzofuranyl)-2-imidazoline (2-BFI) interacts with the opioid system in the rat locus coeruleus, using single-unit extracellular recordings. In morphine-dependent rats, acute administration of the selective imidazoline receptor ligands 2-BFI (10 and 40 mg kg,1, i.p. and 100 ,g, i.c.v.) or valldemossine (10 mg kg,1, i.p.) did not modify the naloxone-induced hyperactivity of locus coeruleus neurons compared with that observed in the morphine-dependent control group. After chronic administration of 2-BFI (10 mg kg,1, i.p., three times daily, for 5 days) and morphine, naloxone-induced hyperactivity and tolerance to morphine were attenuated. This effect was not observed when a lower dose of 2-BFI (1 mg kg,1, i.p.) or valldemossine (10 mg kg,1, i.p.) were used. Acute administration of 2-BFI (10 and 40 mg kg,1, i.p. and 100 ,g, i.c.v.) but not valldemossine (40 mg kg,1, i.p.) diminished the potency of morphine to inhibit locus coeruleus neuron activity in vivo (ED50 values increased by 2.3, 2.9; and 3.1 fold respectively). Similarly, the potency of Met5 -enkephalin to inhibit locus coeruleus neurons was decreased when 2-BFI (100 ,M) was applied to rat brain slices (EC50 increased by 5.6; P<0.05). The present data demonstrate that there is an interaction between 2-BFI and the opioid system in the locus coeruleus. This interaction leads to an attenuation of both the hyperactivity of locus coeruleus neurons during opiate withdrawal and the development of tolerance to morphine when 2-BFI is chronically administered. These results suggest that imidazoline drugs may prove to be useful agents for the management of opioid dependence and tolerance. British Journal of Pharmacology (2003) 138, 494,500. doi:10.1038/sj.bjp.0705052 [source] Critical role of Nitric Oxide on Nicotine-Induced Hyperactivation of Dopaminergic Nigrostriatal System: Electrophysiological and Neurochemical evidence in RatsCNS: NEUROSCIENCE AND THERAPEUTICS, Issue 3 2010Vincenzo Di Matteo Nicotine, the main psychoactive ingredient in tobacco, stimulates dopamine (DA) function, increasing DA neuronal activity and DA release. DA is involved in both motor control and in the rewarding and reinforcing effects of nicotine; however, the complete understanding of its molecular mechanisms is yet to be attained. Substantial evidence indicates that the reinforcing properties of drugs of abuse, including nicotine, can be affected by the nitric oxide (NO) system, which may act by modulating central dopaminergic function. In this study, using single cell recordings in vivo coupled with microiontophoresis and microdialysis in freely moving animals, the role of NO signaling on the hyperactivation elicited by nicotine of the nigrostriatal system was investigated in rats. Nicotine induced a dose-dependent increase of the firing activity of the substantia nigra pars compacta (SNc) DA neurons and DA and 3,4-dihydroxyphenylacetic acid (DOPAC) release in the striatum. Pharmacological manipulation of the NO system did not produce any change under basal condition in terms of neuronal discharge and DA release. In contrast, pretreatments with two NO synthase (NOS) inhibitors, N-,-nitro- l -arginine methyl ester (l -NAME) and 7-nitroindazole (7-NI) were both capable of blocking the nicotine-induced increase of SNc DA neuron activity and DA striatal levels. The effects of nicotine in l -NAME and 7-NI-pretreated rats were partially restored when rats were pretreated with the NO donor molsidomine. These results further support the evidence of an important role played by NO on modulation of dopaminergic function and drug addiction, thus revealing new pharmacological possibilities in the treatment of nicotine dependence and other DA dysfunctions. [source] |