Neurokinin B (neurokinin + b)

Distribution by Scientific Domains


Selected Abstracts


Functional proteomics of neurokinin B in the placenta indicates a novel role in regulating cytotrophoblast antioxidant defences

PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 10 2003
Grzegorz Sawicki
Abstract Neurokinin B (NKB) has recently been demonstrated to be secreted from the placenta in abnormally high amounts in preeclampsia (PE) and to cause hypertension in rats, suggesting it may be a mediator of some pathophysiological features of PE. It is also known that NKB receptors exist in the placenta. To determine the effect of high levels of NKB on the placenta, we have performed proteomics on five separate preparations of cultured purified human term cytotrophoblast cells. The results showed a statistically significant decrease in 20 proteins, of which five were unknown proteins. Proteins important in antioxidant defenses that decreased were thioredoxin, cyclophilin A, cytokeratin 1, and peroxiredoxin 5. Two proteins that inhibit intravascular anticoagulation, cytokeratin 1 and annexin 11 were also decreased. Pathways involving pro-inflammatory cytokine activation of NF-,B are opposed by Raf kinase inhibitor protein, which was also decreased. Cofilin 1, a protein involved in defense against bacteria, was also decreased. Among other proteins that were suppressed by NKB were proteasome proteins, desmoplakin, and calgizzarin. Western blots confirmed the decrease in cytokeratin 1 and cyclophilin A protein after NKB exposure. In PE, there is reduced antioxidant activity and increased intravascular coagulation. The findings that high levels of NKB, similar to those observed in PE, can impair these two classes of activity support the hypothesis that high NKB levels may contribute to the pathogenesis of PE. [source]


Neurokinin 3 Receptor Immunoreactivity in the Septal Region, Preoptic Area and Hypothalamus of the Female Sheep: Colocalisation in Neurokinin B Cells of the Arcuate Nucleus but not in Gonadotrophin-Releasing Hormone Neurones

JOURNAL OF NEUROENDOCRINOLOGY, Issue 1 2010
M. Amstalden
Recent evidence has implicated neurokinin B (NKB) in the complex neuronal network mediating the effects of gonadal steroids on the regulation of gonadotrophin-releasing hormone (GnRH) secretion. Because the neurokinin 3 receptor (NK3R) is considered to mediate the effects of NKB at the cellular level, we determined the distribution of immunoreactive NK3R in the septal region, preoptic area (POA) and hypothalamus of the ewe. NK3R cells and/or fibres were found in areas including the bed nucleus of the stria terminalis, POA, anterior hypothalamic and perifornical areas, dopaminergic A15 region, dorsomedial and lateral hypothalamus, arcuate nucleus (ARC) and the ventral premammillary nucleus. We also used dual-label immunocytochemistry to determine whether a neuroanatomical basis for direct modulation of GnRH neurones by NKB was evident. No GnRH neurones at any rostral-caudal level were observed to contain NK3R immunoreactivity, although GnRH neurones and fibres were in proximity to NK3R-containing fibres. Because NKB fibres formed close contacts with NKB neurones in the ARC, we determined whether these NKB neurones also contained immunoreactive NK3R. In luteal-phase ewes, 64% ± 11 of NKB neurones colocalised NK3R. In summary, NK3R is distributed in areas of the sheep POA and hypothalamus known to be involved in the control of reproductive neuroendocrine function. Colocalisation of NK3R in NKB neurones of the ARC suggests a potential mechanism for the autoregulation of this subpopulation; however, the lack of NK3R in GnRH neurones suggests that the actions of NKB on GnRH neurosecretory activity in the ewe are mediated indirectly via other neurones and/or neuropeptides. [source]


Functional proteomics of neurokinin B in the placenta indicates a novel role in regulating cytotrophoblast antioxidant defences

PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 10 2003
Grzegorz Sawicki
Abstract Neurokinin B (NKB) has recently been demonstrated to be secreted from the placenta in abnormally high amounts in preeclampsia (PE) and to cause hypertension in rats, suggesting it may be a mediator of some pathophysiological features of PE. It is also known that NKB receptors exist in the placenta. To determine the effect of high levels of NKB on the placenta, we have performed proteomics on five separate preparations of cultured purified human term cytotrophoblast cells. The results showed a statistically significant decrease in 20 proteins, of which five were unknown proteins. Proteins important in antioxidant defenses that decreased were thioredoxin, cyclophilin A, cytokeratin 1, and peroxiredoxin 5. Two proteins that inhibit intravascular anticoagulation, cytokeratin 1 and annexin 11 were also decreased. Pathways involving pro-inflammatory cytokine activation of NF-,B are opposed by Raf kinase inhibitor protein, which was also decreased. Cofilin 1, a protein involved in defense against bacteria, was also decreased. Among other proteins that were suppressed by NKB were proteasome proteins, desmoplakin, and calgizzarin. Western blots confirmed the decrease in cytokeratin 1 and cyclophilin A protein after NKB exposure. In PE, there is reduced antioxidant activity and increased intravascular coagulation. The findings that high levels of NKB, similar to those observed in PE, can impair these two classes of activity support the hypothesis that high NKB levels may contribute to the pathogenesis of PE. [source]


Neurokinin B-producing projection neurons in the lateral stripe of the striatum and cell clusters of the accumbens nucleus in the rat

THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 2 2004
Ligang Zhou
Abstract Neurons producing preprotachykinin B (PPTB), the precursor of neurokinin B, constitute 5% of neurons in the dorsal striatum and project to the substantia innominata (SI) selectively. In the ventral striatum, PPTB-producing neurons are collected mainly in the lateral stripe of the striatum (LSS) and cell clusters of the accumbens nucleus (Acb). In the present study, we first examined the distribution of PPTB-immunoreactive neurons in rat ventral striatum and found that a large part of the PPTB-immunoreactive cell clusters was continuous to the LSS, but a smaller part was not. Thus, we divided the PPTB-immunoreactive cell clusters into the LSS-associated and non-LSS-associated ones. We next investigated the projection targets of the PPTB-producing ventral striatal neurons by combining immunofluorescence labeling and retrograde tracing. After injection of Fluoro-Gold into the basal component of the SI (SIb) and medial part of the interstitial nucleus of posterior limb of the anterior commissure, many PPTB-immunoreactive neurons were retrogradely labeled in the LSS-associated cell clusters and LSS, respectively. When the injection site included the ventral part of the sublenticular component of the SI(SIsl), retrogradely labeled neurons showed PPTB-immunoreactivity frequently in non-LSS-associated cell clusters. Furthermore, these PPTB-immunoreactive projections were confirmed by the double-fluorescence method after anterograde tracer injection into the ventral striatum containing the cell clusters. Since the dorsalmost part of the SIsl is known to receive strong inputs from PPTB-producing dorsal striatal neurons, the present results indicate that PPTB-producing ventral striatal neurons project to basal forebrain target regions in parallel with dorsal striatal neurons without significant convergence. J. Comp. Neurol. 480:143,161, 2004. © 2004 Wiley-Liss, Inc. [source]


Selective Neuronal Vulnerability Following Mild Focal Brain Ischemia in the Mouse

BRAIN PATHOLOGY, Issue 4 2003
Juri Katchanov
The evolution of cellular damage over time and the selective vulnerability of different neuronal subtypes was characterized in the striatum following 30-minute middle cerebral artery occlusion and reperfusion in the mouse. Using autoradiography we found an increase in the density of [3H]PK11195 binding sites,likely reflecting microglial activation,in the lesion border at 3 days and in the whole striatum from 10 days to 6 weeks. This was accompanied by a distinct loss of [3H]flumazenil and [3H]CGP39653 binding sites from 10 days up to 6 weeks reflecting neuronal loss. Brain ischemia resulted in a substantial loss of medium spiny projection neurons as seen at three days by Nissl staining, TUNEL and immunocytochemistry using antibodies against microtubule-associated protein (MAP2), NeuN, (,-opioid receptors, substance P, Lenkephalin, neurokinin B, choline acetyltransferase, parvalbumin, calretinin and somatostatin. Both patch and matrix compartments were involved in ischemic damage. In contrast, the numbers of cholinergic, GABAergic, and somatostatin-containing interneurons in the ischemic striatum were not different from those in the contralateral hemisphere at 3 and 14 days. A low density of glutamate receptors, the ability to sequester calcium by calcium-binding proteins and other hitherto unidentified factors may explain this relative resistance of interneurons to acute ischemia. [source]


Tachykinin receptor modulation of cyclooxygenase-2 expression in human polymorphonuclear leucocytes

BRITISH JOURNAL OF PHARMACOLOGY, Issue 3 2009
M Gallicchio
Mandarin translation of abstract Background and purpose:, We investigated the ability of natural and synthetic selective NK receptors agonists and antagonists to modulate cyclooxygenase-2 (COX-2) expression in human polymorphonuclear leucocytes (PMNs). Experimental approach:, The presence of all three tachykinin in PMNs was assessed by Western blot and PCR techniques. Natural and synthetic ligands selective for the tachykinin receptors were used to modulate COX-2 protein (measured with Western blotting) and activity [as prostaglandin E2 (PGE2) output]. Effects of substance P (SP) on phosphorylation of mitogen-activated protein kinases (MAPKs) and nuclear factor-kappa B (NF-,B) activation were studied to analyse the signalling pathway involved in COX-2 up-regulation mediated by SP. Key results:, Stimulation of NK receptors with the natural ligands SP, neurokinin A (NKA) and neurokinin B, in the pmol·L,1 -µmol·L,1 concentration range, modulated COX-2 expression and PGE2 release in a concentration- and time-dependent manner. Experiments with synthetic selective agonists [Sar9, Met(O2)11]SP, [,-Ala8] NKA(4-10), senktide or selective antagonists L703,606, SR48,968 or SR142801, confirmed that COX-2 up-regulation was mediated by NK receptors. We found that mainly p38, p42 and p46 MAPKs were phosphorylated by SP and SB202190, PD98059 and SP600125, which are selective inhibitors of these kinases, blocked SP-induced COX-2 expression. SP also induced nuclear translocation of NF-,B concentration-dependently, with a maximum effect at 1 nmol·L,1. Conclusions and implications:, Human PMNs possess functional NK1, NK2 and NK3 receptors, which mediate the induction of COX-2 expression and NF-,B activation by SP. Mandarin translation of abstract [source]