Home About us Contact | |||
Neuroinflammation
Selected AbstractsTransplanted astrocytes internalize deposited ,-amyloid peptides in a transgenic mouse model of Alzheimer's diseaseGLIA, Issue 2 2008Rea Pihlaja Abstract Alzheimer's disease (AD) is one of the most devastating neurodegenerative disorders. The neuropathological hallmarks include extracellular senile plaques consisting of deposited ,-amyloid (A,) peptides and intraneuronal neurofibrillary tangles. Neuroinflammation and activation of astrocytes are also well-established features of AD neuropathology; however, the relationships between astrocytes and A, deposition remain unclear. Previous studies have shown that adult mouse astrocytes internalize and degrade A, deposits in brain sections prepared from human amyloid precursor protein (APP) transgenic mice. In the present study, we demonstrate that cultured adult, but not neonatal mouse astrocytes, respond morphologically and degrade A, deposits present in human AD brain. We also transplanted astrocytes isolated from enhanced green fluorescent protein expressing adult and neonatal mice into the hippocampi of human A, plaque-bearing transgenic APPSwe+PS1dE9 (APdE9) mice and their wild-type littermates and followed the migration and localization of these astrocytes by confocal microscopy upto 7 days after transplantation. Posttransplantation the astrocytes localized as aggregates or thin strings of many cells within the hippocampi of APdE9 and wild-type mice and showed limited migration from the injection site. Interestingly, most of the transplanted astrocytes were found near A, deposits in the hippocampi of APdE9 mice. In contrast to findings in ex vivo degradation assay, confocal microscopy revealed that both adult and neonatal transplanted astrocytes internalized human A, immunoreactive material in vivo. These results support the role of astrocytes as active A, clearing cells in the CNS that may have important implications for future development of therapeutic strategies for AD. © 2007 Wiley-Liss, Inc. [source] Chronic lithium administration attenuates up-regulated brain arachidonic acid metabolism in a rat model of neuroinflammationJOURNAL OF NEUROCHEMISTRY, Issue 3 2007Mireille Basselin Abstract Neuroinflammation, caused by a 6-day intracerebroventricular infusion of lipopolysaccharide (LPS) in rats, is associated with the up-regulation of brain arachidonic acid (AA) metabolism markers. Because chronic LiCl down-regulates markers of brain AA metabolism, we hypothesized that it would attenuate increments of these markers in LPS-infused rats. Incorporation coefficients k* of AA from plasma into brain, and other brain AA metabolic markers, were measured in rats that had been fed a LiCl or control diet for 6 weeks, and subjected in the last 6 days on the diet to intracerebroventricular infusion of artificial CSF or of LPS. In rats on the control diet, LPS compared with CSF infusion increased k* significantly in 28 regions, whereas the LiCl diet prevented k* increments in 18 of these regions. LiCl in CSF infused rats increased k* in 14 regions, largely belonging to auditory and visual systems. Brain cytoplasmic phospholipase A2 activity, and prostaglandin E2 and thromboxane B2 concentrations, were increased significantly by LPS infusion in rats fed the control but not the LiCl diet. Chronic LiCl administration attenuates LPS-induced up-regulation of a number of brain AA metabolism markers. To the extent that this up-regulation has neuropathological consequences, lithium might be considered for treating human brain diseases accompanied by neuroinflammation. [source] Modulation of inflammation in brain: a matter of fatJOURNAL OF NEUROCHEMISTRY, Issue 3 2007Akhlaq A. Farooqui Abstract Neuroinflammation is a host defense mechanism associated with neutralization of an insult and restoration of normal structure and function of brain. Neuroinflammation is a hallmark of all major CNS diseases. The main mediators of neuroinflammation are microglial cells. These cells are activated during a CNS injury. Microglial cells initiate a rapid response that involves cell migration, proliferation, release of cytokines/chemokines and trophic and/or toxic effects. Cytokines/chemokines stimulate phospholipases A2 and cyclooxygenases. This results in breakdown of membrane glycerophospholipids with the release of arachidonic acid (AA) and docosahexaenoic acid (DHA). Oxidation of AA produces pro-inflammatory prostaglandins, leukotrienes, and thromboxanes. One of the lyso-glycerophospholipids, the other products of reactions catalyzed by phospholipase A2, is used for the synthesis of pro-inflammatory platelet-activating factor. These pro-inflammatory mediators intensify neuroinflammation. Lipoxin, an oxidized product of AA through 5-lipoxygenase, is involved in the resolution of inflammation and is anti-inflammatory. Docosahexaenoic acid is metabolized to resolvins and neuroprotectins. These lipid mediators inhibit the generation of prostaglandins, leukotrienes, and thromboxanes. Levels of prostaglandins, leukotrienes, and thromboxanes are markedly increased in acute neural trauma and neurodegenerative diseases. Docosahexaenoic acid and its lipid mediators prevent neuroinflammation by inhibiting transcription factor NF,B, preventing cytokine secretion, blocking the synthesis of prostaglandins, leukotrienes, and thromboxanes, and modulating leukocyte trafficking. Depending on its timing and magnitude in brain tissue, inflammation serves multiple purposes. It is involved in the protection of uninjured neurons and removal of degenerating neuronal debris and also in assisting repair and recovery processes. The dietary ratio of AA to DHA may affect neurodegeneration associated with acute neural trauma and neurodegenerative diseases. The dietary intake of docosahexaenoic acid offers the possibility of counter-balancing the harmful effects of high levels of AA-derived pro-inflammatory lipid mediators. [source] Neuroinflammation in the pathophysiology of Parkinson's disease: Evidence from animal models to human in vivo studies with [11C]-PK11195 PETMOVEMENT DISORDERS, Issue 13 2007Anna L. Bartels MD Abstract Increasing evidence suggests that neuroinflammation is an active process in Parkinson's disease (PD) that contributes to ongoing neurodegeneration. PD brains and experimental PD models show elevated cytokine levels and up-regulation of inflammatory-associated factors as cyclo-oxygenase-2 and inducible nitric oxide oxidase. Antiinflammatory treatment reduced neuronal degeneration in experimental models. In this review, we summarize the place of neuroinflammation in the pathophysiology of PD. In vivo PET studies are discussed. These methods provide a means to monitor in vivo potential clinical relevance of antiinflammatory treatment strategies in PD. © 2007 Movement Disorder Society [source] Contribution of neuroinflammation in burning mouth syndrome: indications from benzodiazepine useDERMATOLOGIC THERAPY, Issue 2008Fabrizio Guarneri ABSTRACT: Characterized by burning and painful oral sensations in absence of clinically significant mucosal abnormalities, the burning mouth syndrome is, despite numerous researches made, basically idiopathic and, consequently, difficult to treat effectively. Therapy with tricyclic antidepressants and benzodiazepines has been proposed, although the exact pathomechanism is not clear. The objective of this study is to define the possible reasons for the efficacy of benzodiazepines in the treatment of the burning mouth syndrome. Starting from the report of eight cases successfully treated with prazepam, the present authors examined the clinical features and the evidence from literature that support the possibility of a role of neuroinflammation in the pathogenesis of the burning mouth syndrome. Available data suggest that the nervous system could be crucial in the pathogenesis of the syndrome (altered perception of pain, disturbance of neural transmission, increased excitability, negative involvement of trigeminal-vascular system), and the present authors' experience lets them suppose a role for neuroinflammation. This hypothesis could also explain the positive response to benzodiazepines in some patients. The important role of neuroinflammation in dermatologic and oral diseases has been only recently investigated and acknowledged. Further studies on the connection between neuroinflammation and burning mouth syndrome could open interesting perspectives in the understanding and management of this difficult clinical condition. [source] The Blood,Brain Barrier and EpilepsyEPILEPSIA, Issue 11 2006Emily Oby Summary:, During the past several years, there has been increasing interest in the role of the blood,brain barrier (BBB) in epilepsy. Advances in neuroradiology have enhanced our ability to image and study the human cerebrovasculature, and further developments in the research of metabolic deficiencies linked to seizure disorders (e.g., GLUT1 deficiency), neuroinflammation, and multiple drug resistance to antiepileptic drugs (AEDs) have amplified the significance of the BBB's relationship to epilepsy. Prior to 1986, BBB research in epilepsy focused on three main areas: ultrastructural studies, brain glucose availability and transport, and clinical uses of AEDs. However, contrast-based imaging techniques and medical procedures such as BBB disruption provided a framework that demonstrated that the BBB could be reversibly disrupted by pathologic or iatrogenic manipulations, with important implications in terms of CNS drug delivery to "multiple drug resistant" brain. This concept of BBB breakdown for therapeutic purposes has also unveiled a previously unrecognized role for BBB failure as a possible etiologic mechanism in epileptogenesis. Finally, a growing body of evidence has shown that inflammatory mechanisms may participate in the pathological changes observed in epileptic brain, with increasing awareness that blood-borne cells or signals may participate in epileptogenesis by virtue of a leaky BBB. In this article we will review the relationships between BBB function and epilepsy. In particular, we will illustrate consensus and divergence between clinical reality and animal studies. [source] MAPK3 deficiency drives autoimmunity via DC armingEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 5 2010Ivo Bendix Abstract DC are professional APC that instruct T cells during the inflammatory course of EAE. We have previously shown that MAPK3 (Erk1) is important for the induction of T-cell anergy. Our goal was to determine the influence of MAPK3 on the capacity of DC to arm T-cell responses in autoimmunity. We report that DC from Mapk3,/, mice have a significantly higher membrane expression of CD86 and MHC-II and , when loaded with the myelin oligodendrocyte glycoprotein , show a superior capacity to prime naïve T cells towards an inflammatory phenotype than Mapk3+/+ DC. Nonetheless and as previously described, Mapk3,/, mice were only slightly but not significantly more susceptible to myelin oligodendrocyte glycoprotein-induced EAE than WT littermate mice. However, Mapk3+/+ mice engrafted with Mapk3,/, BM (KO,WT) developed a severe form of EAE, in direct contrast to WT,KO mice, which were even less sick than control WT,WT mice. An infiltration of DC and accumulation of Th17 cells was also observed in the CNS of KO,WT mice. Therefore, triggering of MAPK3 in the periphery might be a therapeutic option for the treatment of neuroinflammation since absence of this kinase in the immune system leads to severe EAE. [source] The level of B7 homologue 1 expression on brain DC is decisive for CD8 Treg cell recruitment into the CNS during EAEEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 6 2009Alla L. Zozulya Abstract DC in the CNS have emerged as the major rate-limiting factor for immune invasion and subsequent neuroinflammation during EAE. The mechanism of how this is regulated by brain-localized DC remains unknown. Here, we describe the ability of brain-localized DC expressing B7-H1 molecules to recruit CD8+ T cells to the site of inflammation. Using intracerebral microinjections of B7-homologue 1-deficient DC, we demonstrate a substantial brain infiltration of CD8+ T cells displaying a regulatory phenotype (CD122+) and function, resulting in a decrease of EAE peak clinical values. The recruitment of regulatory-type CD8+ T cells into the CNS and the role of brain DC expressing B7-homologue 1 molecules in this process open up the possibility of DC-targeted therapeutic manipulation of neuroinflammatory diseases. [source] Examination of intravenous and intra-CSF protein delivery for treatment of neurological diseaseEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 6 2009Kim M. Hemsley Abstract Mucopolysaccharidosis type IIIA is a neurodegenerative lysosomal storage disorder characterized by progressive loss of learned skills, sleep disturbance and behavioural problems. Absent or greatly reduced activity of sulphamidase, a lysosomal protein, results in intracellular accumulation of heparan sulphate. Subsequent neuroinflammation and neurodegeneration typify this and many other lysosomal storage disorders. We propose that intra-cerebrospinal fluid protein delivery represents a potential therapeutic avenue for treatment of this and other neurodegenerative conditions; however, technical restraints restrict examination of its use prior to adulthood in mice. We have used a naturally-occurring Mucopolysaccharidosis type IIIA mouse model to determine the effectiveness of combining intravenous protein replacement (1 mg/kg) from birth to 6 weeks of age with intra-cerebrospinal fluid sulphamidase delivery (100 ,g, fortnightly from 6 weeks) on behaviour, the level of heparan sulphate-oligosaccharide storage and other neuropathology. Mice receiving combination treatment exhibited similar clinical improvement and reduction in heparan sulphate storage to those only receiving intra-cerebrospinal fluid enzyme. Reductions in micro- and astrogliosis and delayed development of ubiquitin-positive lesions were seen in both groups. A third group of intravenous-only treated mice did not exhibit clinical or neuropathological improvements. Intra-cerebrospinal fluid injection of sulphamidase effectively, but dose-dependently, treats neurological pathology in Mucopolysaccharidosis type IIIA, even when treatment begins in mice with established disease. [source] CD4+CD25, effector T-cells inhibit hippocampal long-term potentiation in vitroEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 6 2007Gil M. Lewitus Abstract During neuroinflammation T-cells invade the CNS, and may lead to the development and progression of several pathologies, of which multiple sclerosis is the most common. In these pathologies neuroinflammation is often associated with cognitive dysfunction. Using mouse hippocampal slices, we show here that CD4+CD25, T-cells inhibit long-term potentiation (LTP) induced by high-frequency stimulation. The T-cell-mediated inhibition of LTP can be prevented by blockade of ,-aminobutyric acid (GABA)A receptors. These findings provide additional insight into the multiple functions of T-cells in CNS pathologies. [source] Neuroprotective effects of human mesenchymal stem cells on dopaminergic neurons through anti-inflammatory action,GLIA, Issue 1 2009You-Joung Kim Abstract Parkinson's disease (PD) is a common, progressive neurodegenerative disorder caused by the loss of dopaminergic neurons in the substantia nigra (SN). Numerous studies have provided evidence suggesting that neuroinflammation plays an important role in the pathogenesis of PD. In this study, we used lipopolysaccharide (LPS)-induced in vitro and in vivo inflammation models to investigate whether human mesenchymal stem cells (hMSCs) have a protective effect on the dopaminergic system through anti-inflammatory mechanisms. The hMSC treatment significantly decreased LPS-induced microglial activation, tumor necrosis factor (TNF)-,, inducible nitric oxide synthase (iNOS) mRNA expression, and production of NO and TNF-, compared with the LPS-only treatment group. In co-cultures of microglia and mesencephalic dopaminergic neurons, hMSC treatment significantly decreased the loss of tyrosine hydroxylase-immunopositive (TH-ip) cells. The hMSC treatment in rats showed that TH-ip neuronal loss induced by LPS stimulation in the SN was considerably decreased and was clearly accompanied by a decrease in activation of microglia, as well as TNF-, and iNOS mRNA expression and production of TNF-,. These data suggest that hMSCs have a neuroprotective effect on dopaminergic neurons through anti-inflammatory actions mediated by the modulation of microglial activation. Along with various trophic effects and trans-differentiational potency, the anti-inflammatory properties of MSCs could have major therapeutic implications in the treatment of PD. © 2008 Wiley-Liss, Inc. [source] Melatonin as a potential therapeutic agent in psychiatric illnessHUMAN PSYCHOPHARMACOLOGY: CLINICAL AND EXPERIMENTAL, Issue 5 2009Maria D. Maldonado Abstract The aim of this review was to summarize the potential use of melatonin in the treatment of mental disorders, specifically bipolar disorders, depression, and schizophrenia. To date, melatonin has been most commonly used in psychiatry because of its hypnotic, rhythm resynchronizing, and antioxidant actions. Here, we examine other properties of the melatonin including its anti-inflammatory, antinociceptive, anxiolytic, and drug detoxification actions as well as its protective effects against neural loss. The brain is an intricate sensory and motor organ which receives information from both the external and internal environments. It transduces information into complex chemical and electrical signals which are transmitted throughout the central nervous system (CNS) and the organism. The pathogenesis of mental disorders remains ambiguous and neuroinflammation has been proposed as a causative agent. We consider the potential contributions of melatonin as therapeutic agent in CNS and during neuroinflammation in mental disorders. Copyright © 2009 John Wiley & Sons, Ltd. [source] APOE epsilon-4 allele and cytokine production in Alzheimer's diseaseINTERNATIONAL JOURNAL OF GERIATRIC PSYCHIATRY, Issue 4 2010Paolo Olgiati Abstract Objective The APOE epsilon-4 allele has consistently emerged as a susceptibility factor for Alzheimer's disease (AD). Pro-inflammatory cytokines are detectable at abnormal levels in AD, and are thought to play a pathophysiological role. Animal studies have shown dose-dependent correlations between the number of APOE epsilon-4 alleles and the levels of pro-inflammatory cytokines. The aims of this study were to investigate the influence of APOE genotypes on TNF- ,, IL-6, and IL-1, secreted by peripheral blood mononuclear cells (PBMC) from human patients with AD and to analyze the correlation between cytokine production and AD clinical features. Methods Outpatients with AD (n,=,40) were clinically evaluated for cognitive decline (MMSE) and psychiatric symptoms (Cornell Scale for Depression in Dementia; Neuropsychiatric Inventory) and genotyped for APOE variants. PBMCs were isolated from the donors and used to assess spontaneous and PMA-stimulated secretion of TNF- ,, IL-6, and IL-1,. Cytokine production was determined by immuno-enzymatic assays (ELISA). Results In comparison with their counterparts without APOE4, patients with at least one copy of the APOE epsilon-4 allele showed higher spontaneous (p,=,0.037) and PMA-induced (p,=,0.039) production of IL-1, after controlling for clinical variables. Significant correlations were reported between NPI scores (psychotic symptoms) and IL-6 production. Conclusion These preliminary findings suggest the involvement of inflammatory response in the pathogenic effect of the APOE epsilon-4 allele in AD, although their replication in larger samples is mandatory. The modest correlations between pro-inflammatory cytokines released at peripheral level and AD features emphasizes the need for further research to elucidate the role of neuroinflammation in pathophysiology of AD. Copyright © 2009 John Wiley & Sons, Ltd. [source] S100B induces tau protein hyperphosphorylation via Dickopff-1 up-regulation and disrupts the Wnt pathway in human neural stem cellsJOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 3 2008Giuseppe Esposito Abstract Previous studies suggest that levels of the astrocyte-derived S100B protein, such as those occurring in brain extra-cellular spaces consequent to persistent astroglial activation, may have a pathogenetic role in Alzheimer's disease (AD). Although S100B was reported to promote , amyloid precursor protein overexpression, no clear mechanistic relationship between S100B and formation of neurofibrillary tangles (NFTs) is established. This in vitro study has been aimed at investigating whether S100B is able to disrupt Wnt pathway and lead to tau protein hyperphosphorylation. Utilizing Western blot, electrophoretic mobility shift assay, supershift and reverse transcriptase-polymerase chain reaction techniques, it has been demonstrated that micromolar S100B concentrations stimulate c-Jun N-terminal kinase (JNK) phosphorylation through the receptor for advanced glycation ending products, and subsequently activate nuclear AP-1/cJun transcription, in cultured human neural stem cells. In addition, as revealed by Western blot, small interfering RNA and immunofluorescence analysis, S100B-induced JNK activation increased expression of Dickopff-1 that, in turn, promoted glycogen synthase kinase 3, phosphorylation and ,-catenin degradation, causing canonical Wnt pathway disruption and tau protein hyperphosphorylation. These findings propose a previously unrecognized link between S100B and tau hyperphosphorylation, suggesting S100B can contribute to NFT formation in AD and in all other conditions in which neuroinflammation may have a crucial role. [source] Inhibition of CCAAT/enhancer binding protein , expression by chrysin in microglial cells results in anti-inflammatory and neuroprotective effectsJOURNAL OF NEUROCHEMISTRY, Issue 2 2010Núria Gresa-Arribas J. Neurochem. (2010) 115, 526,536. Abstract The control of neuroinflammation is a potential target to be considered in the treatment of neurodegenerative diseases. It is therefore important to find anti-inflammatory drugs and study new targets that inhibit neuroinflammation. We designed an experimental model of neuroinflammation in vitro to study the anti-inflammatory and neuroprotective effects of the flavonoid chrysin and the involvement of nuclear factor-,B p65 and CCAAT/enhancer binding proteins (C/EBPs) , and , transcription factors in its mechanism of action. We used primary cultures of mouse embryonic cortical neurons and cultures of BV2 (murine microglial cell line) or mouse primary microglia. We induced neuronal death in neuronal-BV2/microglial co-cultures using lipopolysaccharide of Escherichia coli and interferon-,. Chrysin pre-treatment inhibited nitric oxide and tumor necrosis factor-, production, as well as inducible nitric oxide synthase expression in lipopolysaccharide E. coli and interferon-,-treated microglial cells, but did not affect cyclooxygenase-2 expression. Chrysin pre-treatment also protected neurons against the neurotoxicity induced by reactive microglial cells. These effects were associated to a decrease in C/EBP, protein level, mRNA expression, and DNA-binding activity, with no effect on C/EBP, and p65 nuclear protein levels or DNA-binding activity, pointing out C/EBP, as a possible mediator of chrysin effects. Consequently, C/EBP, is a possible target to act against neuroinflammation in neurodegenerative processes. [source] Synergistic dopaminergic neurotoxicity of manganese and lipopolysaccharide: differential involvement of microglia and astrogliaJOURNAL OF NEUROCHEMISTRY, Issue 2 2010Ping Zhang Abstract Overexposure to manganese is known to cause damage to basal ganglial neurons and the development of movement abnormalities. Activation of microglia and astrocytes has increasingly been associated with the pathogenesis of a variety of neurological disorders. We have recently shown that microglial activation facilitates manganese chloride (MnCl2, 10,300 ,M)-induced preferential degeneration of dopamine (DA) neurons. In this study, we report that combinations of MnCl2 (1,30 ,M) and endotoxin lipopolysaccharide (LPS, 0.5,2 ng/mL), at minimally effective concentrations when used alone, induced synergistic and preferential damage to DA neurons in rat primary neuron-glia cultures. Mechanistically, MnCl2 significantly potentiated LPS-induced release of tumor necrosis factor-alpha and interleukin-1 beta in microglia, but not in astroglia. MnCl2 and LPS were more effective in inducing the formation of reactive oxygen species and nitric oxide in microglia than in astroglia. Furthermore, MnCl2 and LPS-induced free radical generation, cytokine release, and DA neurotoxicity was significantly attenuated by pre-treatment with potential anti-inflammatory agents minocycline and naloxone. These results demonstrate that the combination of manganese overexposure and neuroinflammation is preferentially deleterious to DA neurons. Moreover, these findings not only shed light on the understanding of manganese neurotoxicity but may also bear relevance to the potentially multifactorial etiology of Parkinson's disease. [source] Differential gene expression in LPS/IFN, activated microglia and macrophages: in vitro versus in vivoJOURNAL OF NEUROCHEMISTRY, Issue 2009Christoph D. Schmid Abstract Two different macrophage populations contribute to CNS neuroinflammation: CNS-resident microglia and CNS-infiltrating peripheral macrophages. Markers distinguishing these two populations in tissue sections have not been identified. Therefore, we compared gene expression between LPS (lipopolysaccharide)/interferon (IFN),-treated microglia from neonatal mixed glial cultures and similarly treated peritoneal macrophages. Fifteen molecules were identified by quantative PCR (qPCR) as being enriched from 2-fold to 250-fold in cultured neonatal microglia when compared with peritoneal macrophages. Only three of these molecules (C1qA, Trem2, and CXCL14) were found by qPCR to be also enriched in adult microglia isolated from LPS/IFN,-injected CNS when compared with infiltrating peripheral macrophages from the same CNS. The discrepancy between the in vitro and in vivo qPCR data sets was primarily because of induced expression of the ,microglial' molecules (such as the tolerance associated transcript, Tmem176b) in CNS-infiltrating macrophages. Bioinformatic analysis of the ,19000 mRNAs detected by TOGA gene profiling confirmed that LPS/IFN,-activated microglia isolated from adult CNS displayed greater similarity in total gene expression to CNS-infiltrating macrophages than to microglia isolated from unmanipulated healthy adult CNS. In situ hybridization analysis revealed that nearly all microglia expressed high levels of C1qA, while subsets of microglia expressed Trem2 and CXCL14. Expression of C1qA and Trem2 was limited to microglia, while large numbers of GABA+ neurons expressed CXCL14. These data suggest that (i) CNS-resident microglia are heterogeneous and thus a universal microglia-specific marker may not exist; (ii) the CNS micro-environment plays significant roles in determining the phenotypes of both CNS-resident microglia and CNS-infiltrating macrophages; (iii) the CNS microenvironment may contribute to immune privilege by inducing macrophage expression of anti-inflammatory molecules. [source] The complement cascade: Yin,Yang in neuroinflammation , neuro-protection and -degenerationJOURNAL OF NEUROCHEMISTRY, Issue 5 2008Jessy John Alexander Abstract The complement cascade has long been recognized to play a key role in inflammatory and degenerative diseases. It is a ,double edged' sword as it is necessary to maintain health, yet can have adverse effects when unregulated, often exacerbating disease. The contrasting effects of complement, depending on whether in a setting of health or disease, is the price paid to achieve flexibility in scope and degree of a protective response for the host from infection and injury. Loss or even decreased efficiency of critical regulatory control mechanisms can result in aggravated inflammation and destruction of self-tissue. The role of the complement cascade is poorly understood in the nervous system and neurological disorders. Novel studies have demonstrated that the expression of complement proteins in brain varies in different cell types and the effects of complement activation in various disease settings appear to differ. Understanding the functioning of this cascade is essential, as it has therapeutic implications. In this review, we will attempt to provide insight into how this complex cascade functions and to identify potential strategic targets for therapeutic intervention in chronic diseases as well as acute injury in the CNS. [source] Triptolide inhibits COX-2 expression and PGE2 release by suppressing the activity of NF-,B and JNK in LPS-treated microgliaJOURNAL OF NEUROCHEMISTRY, Issue 3 2008Yuntao Gong Abstract Activated microglia participate in neuroinflammation which contributes to neuronal damage in neurodegenerative diseases. Inhibition of microglial activation may have potential anti-inflammatory effects. Our laboratory has previously reported that triptolide, a natural biologically active compound extracted from Tripterygium wilfordii, could protect dopaminergic neurons from inflammation-mediated damage. However, the mechanism by which triptolide inhibits inflammation remains unknown. We reported here that inhibition of prostaglandin E2 (PGE2) production could be a potential mechanism of triptolide to suppress inflammation. Triptolide suppressed c- jun NH2-terminal kinase (JNK) phosphorylation, cyclooxygenase 2 (COX-2) expression and PGE2 production in microglial cultures treated with lipopolysaccharide (LPS). Triptolide also greatly inhibited the transcriptional activity, but not the DNA-binding activity of nuclear factor-,B (NF-,B) in microglia following LPS stimulation. These results indicate that triptolide might suppress NF-,B activity to down-regulate COX-2 expression. The LPS-stimulated transcriptional activity of NF-,B was suppressed by inhibition of p38MAPK, but not by that of JNK and extracellular signal-regulated kinase. Furthermore, the LPS-induced PGE2 production was reduced by inhibiting these kinases. Taken together, these results suggest that triptolide may suppress neuroinflammation via a mechanism that involves inactivation of two parallel signaling pathways: p38-NF-,B-COX-2-PGE2 and JNK-PGE2. [source] Chronic lithium administration attenuates up-regulated brain arachidonic acid metabolism in a rat model of neuroinflammationJOURNAL OF NEUROCHEMISTRY, Issue 3 2007Mireille Basselin Abstract Neuroinflammation, caused by a 6-day intracerebroventricular infusion of lipopolysaccharide (LPS) in rats, is associated with the up-regulation of brain arachidonic acid (AA) metabolism markers. Because chronic LiCl down-regulates markers of brain AA metabolism, we hypothesized that it would attenuate increments of these markers in LPS-infused rats. Incorporation coefficients k* of AA from plasma into brain, and other brain AA metabolic markers, were measured in rats that had been fed a LiCl or control diet for 6 weeks, and subjected in the last 6 days on the diet to intracerebroventricular infusion of artificial CSF or of LPS. In rats on the control diet, LPS compared with CSF infusion increased k* significantly in 28 regions, whereas the LiCl diet prevented k* increments in 18 of these regions. LiCl in CSF infused rats increased k* in 14 regions, largely belonging to auditory and visual systems. Brain cytoplasmic phospholipase A2 activity, and prostaglandin E2 and thromboxane B2 concentrations, were increased significantly by LPS infusion in rats fed the control but not the LiCl diet. Chronic LiCl administration attenuates LPS-induced up-regulation of a number of brain AA metabolism markers. To the extent that this up-regulation has neuropathological consequences, lithium might be considered for treating human brain diseases accompanied by neuroinflammation. [source] Modulation of inflammation in brain: a matter of fatJOURNAL OF NEUROCHEMISTRY, Issue 3 2007Akhlaq A. Farooqui Abstract Neuroinflammation is a host defense mechanism associated with neutralization of an insult and restoration of normal structure and function of brain. Neuroinflammation is a hallmark of all major CNS diseases. The main mediators of neuroinflammation are microglial cells. These cells are activated during a CNS injury. Microglial cells initiate a rapid response that involves cell migration, proliferation, release of cytokines/chemokines and trophic and/or toxic effects. Cytokines/chemokines stimulate phospholipases A2 and cyclooxygenases. This results in breakdown of membrane glycerophospholipids with the release of arachidonic acid (AA) and docosahexaenoic acid (DHA). Oxidation of AA produces pro-inflammatory prostaglandins, leukotrienes, and thromboxanes. One of the lyso-glycerophospholipids, the other products of reactions catalyzed by phospholipase A2, is used for the synthesis of pro-inflammatory platelet-activating factor. These pro-inflammatory mediators intensify neuroinflammation. Lipoxin, an oxidized product of AA through 5-lipoxygenase, is involved in the resolution of inflammation and is anti-inflammatory. Docosahexaenoic acid is metabolized to resolvins and neuroprotectins. These lipid mediators inhibit the generation of prostaglandins, leukotrienes, and thromboxanes. Levels of prostaglandins, leukotrienes, and thromboxanes are markedly increased in acute neural trauma and neurodegenerative diseases. Docosahexaenoic acid and its lipid mediators prevent neuroinflammation by inhibiting transcription factor NF,B, preventing cytokine secretion, blocking the synthesis of prostaglandins, leukotrienes, and thromboxanes, and modulating leukocyte trafficking. Depending on its timing and magnitude in brain tissue, inflammation serves multiple purposes. It is involved in the protection of uninjured neurons and removal of degenerating neuronal debris and also in assisting repair and recovery processes. The dietary ratio of AA to DHA may affect neurodegeneration associated with acute neural trauma and neurodegenerative diseases. The dietary intake of docosahexaenoic acid offers the possibility of counter-balancing the harmful effects of high levels of AA-derived pro-inflammatory lipid mediators. [source] IL-4 attenuates the neuroinflammation induced by amyloid-, in vivo and in vitroJOURNAL OF NEUROCHEMISTRY, Issue 3 2007Anthony Lyons Abstract It has been shown that A, inhibits long-term potentiation (LTP) in the rat hippocampus and this is accompanied by an increase in hippocampal concentration of IL-1,. A, also increases microglial activation, which is the likely cell source of IL-1,. Because IL-4 attenuates the effects of IL-1, in hippocampus, and microglial activation is inhibited by minocycline, we assessed the ability of both IL-4 and minocycline to modulate the effects of A, on LTP and IL-1, concentration. Following treatment with A,, IL-4 or minocycline, rats were assessed for their ability to sustain LTP in perforant path-granule cell synapses. We report that the A,-induced inhibition of LTP was associated with increases in expression of MHCII, JNK phosphorylation and IL-1, concentration, and that these changes were attenuated by treatment of rats with IL-4 and minocycline. We also report that A,-induced increases in expression of MHCII and IL-1, were similarly attenuated by IL-4 and minocycline in glial cultures prepared from neonatal rats. These data suggest that glial cell activation and the consequent increase in IL-1, concentration mediate the inhibitory effect of A, on LTP and indicate that IL-4, by down-regulating glial cell activation, antagonizes the effects of A,. [source] Impairment of blood,cerebrospinal fluid barrier properties by retrovirus-activated T lymphocytes: reduction in cerebrospinal fluid-to-blood efflux of prostaglandin E2JOURNAL OF NEUROCHEMISTRY, Issue 6 2005Seng Thuon Khuth Abstract The choroid plexus epithelium forms the interface between the blood and the CSF. In conjunction with the tight junctions restricting the paracellular pathway, polarized specific transport systems in the choroidal epithelium allow a fine regulation of CSF-borne biologically active mediators. The highly vascularized stroma delimited by the choroidal epithelium can be a reservoir for retrovirus-infected or activated immune cells. In this work, new insight in the implication of the blood,CSF barrier in neuroinfectious and inflammatory diseases is provided by using a differentiated cellular model of the choroidal epithelium, exposed to infected T lymphocytes. We demonstrate that T cells activated by a retroviral infection, but not non-infected cells, reduce the transporter-mediated CSF-to-blood efflux of organic anions, in particular that of the potent pro-inflammatory prostaglandin PGE2, via the release of soluble factors. A moderate alteration of the paracellular permeability also occurs. We identified the viral protein Tax, oxygenated free radicals, matrix-metalloproteinases and pro-inflammatory cytokines as active molecules released during the exposure of the epithelium to infected T cells. Among them, tumour necrosis factor and interleukin 1 are directly involved in the mechanism underlying the decrease in some choroidal organic anion efflux. Given the strong involvement of CSF-borne PGE2 in sickness behaviour syndrome, these data suggest that the blood,CSF barrier plays an important role in the pathophysiology of neuroinflammation and neuroinfection, via changes in the transport processes controlling the CSF biodisposition of PGE2. [source] Novel role of TGF-, in differential astrocyte-TIMP-1 regulation: Implications for HIV-1-dementia and neuroinflammationJOURNAL OF NEUROSCIENCE RESEARCH, Issue 7 2006Alok Dhar Abstract Astrocyte production of tissue inhibitor of metalloproteinase (TIMP)-1 is important in central nervous system (CNS) homeostasis and inflammatory diseases such as HIV-1-associated dementia (HAD). TIMPs and matrix metalloproteinases (MMPs) regulate the remodeling of the extracellular matrix. An imbalance between TIMPs and MMPs is associated with many pathologic conditions. Our recently published studies uniquely demonstrate that HAD patients have reduced levels of TIMP-1 in the brain. Astrocyte-TIMP-1 expression is differentially regulated in acute and chronic inflammatory conditions. In this and the adjoining report (Gardner et al., 2006), we investigate the mechanisms that may be involved in differential TIMP-1 regulation. One mechanism for TIMP-1 downregulation is the production of anti-inflammatory molecules, which can activate signaling pathways during chronic inflammation. We investigated the contribution of transforming growth factor (TGF)-signaling in astrocyte-MMP/TIMP-1-astrocyte regulation. TGF-,1 and ,2 levels were upregulated in HAD brain tissues. Co-stimulation of astrocytes with IL-1, and TGF-, mimicked the TIMP-1 downregulation observed with IL-1, chronic activation. Measurement of astrocyte-MMP protein levels showed that TGF-, combined with IL-1, increased MMP-2 and decreased proMMP-1 expression compared to IL-1, alone. We propose that one of the mechanisms involved in TIMP-1 downregulation may be through TGF-signaling in chronic immune activation. These studies show a novel extracellular regulatory loop in astrocyte-TIMP-1 regulation. © 2006 Wiley-Liss, Inc. [source] Potential mechanisms for astrocyte-TIMP-1 downregulation in chronic inflammatory diseasesJOURNAL OF NEUROSCIENCE RESEARCH, Issue 7 2006Jessica Gardner Abstract The pathogenesis of many neurodegenerative disorders, including human immunodeficiency virus (HIV)-1 associated dementia, is exacerbated by an imbalance between matrix metalloproteinases (MMPs) and their inhibitors, tissue inhibitors of metalloproteinases (TIMPs). In the context of disease, TIMP-1 has emerged as an important multifunctional protein capable of regulating inflammation. We previously reported differential TIMP-1 expression in acute versus chronic activation of astrocytes. This study investigates possible mechanisms underlying TIMP-1 downregulation in chronic neuroinflammation. We used interleukin (IL)-1, as a model pro-inflammatory stimulus and measured TIMP-1 binding to extracellular matrix, cell death, receptor downregulation, TIMP-1 mRNA stability and transcriptional regulation in activated astrocytes. TIMP-1 remained localized to the cell body or was secreted into the cell supernatant. DNA fragmentation ELISA and MTT assay showed that prolonged IL-1, activation of astrocytes induced significant astrocyte death. In acute and chronic IL-1,-activated astrocytes, IL-1 receptor levels were not significantly different. TIMP-1 mRNA stability was measured in astrocytes and U87 astroglioma cells by real-time PCR, and TIMP-1 promoter activation was studied using TIMP-1-luciferase reporter constructs in transfected astrocytes. Our results indicated that TIMP-1 expression is regulated through multiple mechanisms. Transcriptional control and loss of mRNA stabilization are, however, the most likely primary contributors to chronic downregulation of TIMP-1. These data are important for unraveling the mechanisms underlying astrocyte responses during chronic neuroinflammation and have broader implications in other inflammatory diseases that involve MMP/TIMP imbalance. © 2006 Wiley-Liss, Inc. [source] Loss of dopaminergic neurons by the induction of inducible nitric oxide synthase and cyclooxygenase-2 via CD40: Relevance to Parkinson's diseaseJOURNAL OF NEUROSCIENCE RESEARCH, Issue 6 2005Tatsusada Okuno Abstract A glial reaction associated with up-regulation of inflammatory molecules has been suggested to play an important role in dopaminergic neuron loss in Parkinson's disease (PD). Among inflammatory molecules, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) have been focused upon as key factors in the pathogenesis. However, the mechanism of how these molecules are induced in PD brains is not clearly understood. We focused on CD40, which is expressed on neural cells and could be implicated in the neuroinflammation by inducing inflammatory molecules. We showed that both iNOS and COX-2 were up-regulated in microglia and astrocytes by CD40 stimulation in association with a low dose of interferon-, (IFN-,) in vitro. Selective loss of dopaminergic neurons was induced by costimulation with CD40 and IFN-, in mesencephalic cultures, which was protected by selective inhibitors of iNOS and/or COX-2. We also found in CD40-stimulated astrocytes an increase of a low-affinity IgE receptor CD23, which is known to induce iNOS expression. Together these data suggest that up-regulated iNOS and COX-2 via the CD40 pathway may lead to dopaminergic neuron loss and may participate in the neuroinflammaory pathway of PD. © 2005 Wiley-Liss, Inc. [source] Melatonin attenuates kainic acid-induced hippocampal neurodegeneration and oxidative stress through microglial inhibitionJOURNAL OF PINEAL RESEARCH, Issue 2 2003Seung-Yun Chung Abstract:,The antioxidant and anti-inflammatory effects of melatonin on kainic acid (KA)-induced neurodegeneration in the hippocampus were evaluated in vivo. It has been suggested that the pineal secretory product, melatonin, protects neurons in vitro from excitotoxicity mediated by kainate-sensitive glutamate receptors, and from oxidative stress-induced DNA damage and apoptosis. In this study, we injected 10 mg/kg kainate intraperitoneally (i.p.) into adult male Sprague-Dawley rats. This results in selective neuronal degeneration accompanied by intense microglial activation and triggers DNA damage in the hippocampus. We tested the in vivo efficacy of melatonin in preventing KA-induced neurodegeneration, oxidative stress and neuroinflammation in the hippocampus. Melatonin (2.5 mg/kg, i.p.) was given 20 min before, immediately after, and 1 and 2 hr after KA administration. Rats were killed 72 hr later and their hippocampi were examined for evidence of DNA damage (in situ dUTP end-labeling, i.e. TUNEL staining), cell viability (hematoxylin and eosin staining), and microglial (isolectin-B4 histochemistry) and astroglial responses (glial fibrillary acidic protein immunohistochemistry), as well as lipid peroxidation (4-hydroxynonenal immunohistochemistry). A cumulative dose of 10 mg/kg melatonin attenuates KA-induced neuronal death, lipid peroxidation, and microglial activation, and reduces the number of DNA breaks. A possible mechanism for melatonin-mediated neuroprotection involves its antioxidant and anti-inflammatory actions. The present data suggest that melatonin is potentially useful in the treatment of acute brain pathologies associated with oxidative stress-induced neuronal damage such as epilepsy, stroke, and traumatic brain injury. [source] Neuroinflammation in the pathophysiology of Parkinson's disease: Evidence from animal models to human in vivo studies with [11C]-PK11195 PETMOVEMENT DISORDERS, Issue 13 2007Anna L. Bartels MD Abstract Increasing evidence suggests that neuroinflammation is an active process in Parkinson's disease (PD) that contributes to ongoing neurodegeneration. PD brains and experimental PD models show elevated cytokine levels and up-regulation of inflammatory-associated factors as cyclo-oxygenase-2 and inducible nitric oxide oxidase. Antiinflammatory treatment reduced neuronal degeneration in experimental models. In this review, we summarize the place of neuroinflammation in the pathophysiology of PD. In vivo PET studies are discussed. These methods provide a means to monitor in vivo potential clinical relevance of antiinflammatory treatment strategies in PD. © 2007 Movement Disorder Society [source] Activation of STAT3 and inhibitory effects of pioglitazone on STAT3 activity in a mouse model of SOD1-mutated amyotrophic lateral sclerosisNEUROPATHOLOGY, Issue 4 2010Noriyuki Shibata Signal transducer and activator of transcription-3 (STAT3) is a member of the proinflammatory transcription factor STAT family. Several studies have documented implications for neuroinflammation in amyotrophic lateral sclerosis (ALS). We recently demonstrated activation of STAT3 in spinal cords obtained at autopsy from sporadic ALS patients. To determine the involvement of STAT3 and effects of pioglitazone on STAT3 activity in familial ALS with superoxide dismutase-1 (SOD1) mutation, we performed immunoblot and immunohistochemical analyses of the active form of STAT3 (p-STAT3) in spinal cords from mice overexpressing mutant SOD1 (ALS mice) and nontransgenic littermates (control mice). Immunoblot analysis delineated significant increases in nuclear p-STAT3 levels in non-treated ALS mice as compared with pioglitazone-treated ALS mice and non-treated and pioglitazone-treated control mice. Immunohistochemical analysis revealed prominent p-STAT3 accumulations in the nucleus of motor neurons, reactive astrocytes and activated microglia in non-treated ALS mice but not pioglitazone-treated ALS mice and non-treated and pioglitazone-treated control mice. The present results provide in vivo evidence for increased phosphorylative activation and nuclear translocation of STAT3 in motor neurons and glia in mouse motor neuron disease, suggesting a common pathological process between sporadic and SOD1-mutated familial forms of ALS. Moreover, it is likely that pioglitazone may exert inhibitory effects on STAT3-mediated proinflammtory mechanisms in this disease. [source] The Role of Glia and the Immune System in the Development and Maintenance of Neuropathic PainPAIN PRACTICE, Issue 3 2010Ricardo Vallejo MD Abstract Neuropathic pain refers to a variety of chronic pain conditions with differing underlying pathophysiologic mechanisms and origins. Recent studies indicate a communication between the immune system and the nervous system. A common underlying mechanism of neuropathic pain is the presence of inflammation at the site of the damaged or affected nerve(s). This inflammatory response initiates a cascade of events resulting in the concentration and activation of innate immune cells at the site of tissue injury. The release of immunoactive substances such as cytokines, neurotrophic factors, and chemokines initiate local actions and can result in a more generalized immune response. The resultant neuroinflammatory environment can cause activation of glial cells located in the spinal cord and the brain, which appear to play a prominent role in nociception. Glial cells, also known as neuroglia, are nonconducting cells that modulate neurotransmission at the synaptic level. Glial cells can be subdivided into two primary categories: microglia and macroglia, which include astrocytes and oligodendrocytes. Astrocytes and microglia are known to play a role in the development, spread, and potentiation of neuropathic pain. Following peripheral nociceptive activation via nerve injury, microglia become activated and release pro-inflammatory cytokines such as tumor necrosis factor-,, interleukin-1,, and interleukin-6, thereby initiating the pain process. Microglia propagate the neuroinflammation by recruiting other microglia and eventually activating nearby astrocytes, which prolongs the inflammatory state and leads to a chronic neuropathic pain condition. Our review focuses on the role of glia and the immune system in the development and maintenance of neuropathic pain. [source] |