Home About us Contact | |||
Neuroendocrine Pathways (neuroendocrine + pathway)
Selected AbstractsNeuroendocrine pathways of addictive behaviourADDICTION BIOLOGY, Issue 3-4 2004F Kiefer Alcohol intake is known to modulate plasma concentrations of neuroendocrine peptides. However, recent results suggest that the endocrine system may not only respond passively to alcohol intake but that, vice versa, it also actively modulates alcohol intake behaviour. The most coherent body of data concerns the hypothalamo,-,pituitary,-,adrenocortical (HPA) axis, with low corticotrophin-releasing hormone (CRH) being associated with more intense craving and increased probability of relapse after acute detoxification. Leptin, ,-endorphin and atrial natriuretic peptide (ANP), which indirectly regulate the HPA system, also may modulate the intensity of craving or the intensity of the alcohol withdrawal syndrome. Although most of the currently available data demonstrate association rather than causality between neuroendocrine changes and alcohol-related behaviours, they do provide testable hypotheses and open up perspectives of treating alcohol dependence via manipulation of the neuroendocrine axis. [source] Review: Energy regulation and neuroendocrine,immune control in chronic inflammatory diseasesJOURNAL OF INTERNAL MEDICINE, Issue 6 2010R. H. Straub Abstract., Straub RH, Cutolo M, Buttgereit F, Pongratz G (University Hospital Regensburg, Regensburg, Germany; University of Genova, Genova, Italy; and Charité University Medicine Berlin, Berlin, Germany). Energy regulation and neuroendocrine,immune control in chronic inflammatory diseases (Review). J Intern Med 2010; 267:543,560. Energy regulation (EnR) is most important for homoeostatic regulation of physiological processes. Neuroendocrine pathways are involved in EnR. We can separate factors that provide energy-rich fuels to stores [parasympathetic nervous system (PSNS), insulin, insulin-like growth factor-1, oestrogens, androgens and osteocalcin] and those that provide energy-rich substrates to consumers [sympathetic nervous system (SNS), hypothalamic,pituitary,adrenal axis, thyroid hormones, glucagon and growth hormone]. In chronic inflammatory diseases (CIDs), balanced energy-rich fuel allocation to stores and consumers, normally aligned with circadian rhythms, is largely disturbed due to the vast fuel consumption of an activated immune system (up to 2000 kJ day,1). Proinflammatory cytokines such as tumour necrosis factor or interleukins 1, and 6, circulating activated immune cells and sensory nerve fibres signal immune activation to the rest of the body. This signal is an appeal for energy-rich fuels as regulators are switched on to supply energy-rich fuels (,energy appeal reaction'). During evolution, adequate EnR evolved to cope with nonlife-threatening diseases, not with CIDs (huge negative selection pressure and reduced reproduction). Thus, EnR is inadequate in CIDs leading to many abnormalities, including sickness behaviour, anorexia, hypovitaminosis D, cachexia, cachectic obesity, insulin resistance, hyperinsulinaemia, dyslipidaemia, fat deposits near inflamed tissue, hypoandrogenaemia, mild hypercortisolaemia, activation of the SNS (hypertension), CID-related anaemia and osteopenia. Many of these conditions can contribute to the metabolic syndrome. These signs and symptoms become comprehensible in the context of an exaggerated call for energy-rich fuels by the immune system. We propose that the presented pathophysiological framework may lead to new therapeutical approaches and to a better understanding of CID sequence. [source] The ecology and evolutionary endocrinology of reproduction in the human femaleAMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, Issue S49 2009Virginia J. Vitzthum Abstract Human reproductive ecology (HRE) is the study of the mechanisms that link variation in reproductive traits with variation in local habitats. Empirical and theoretical contributions from biological anthropology, physiology, and demography have established the foundation necessary for developing a comprehensive understanding, grounded in life history theory (LHT), of temporal, individual, and populational variation in women's reproductive functioning. LHT posits that natural selection leads to the evolution of mechanisms that tend to allocate resources to the competing demands of growth, reproduction, and survival such that fitness is locally maximized. (That is, among alternative allocation patterns exhibited in a population, those having the highest inclusive fitness will become more common over generational time.) Hence, strategic modulation of reproductive effort is potentially adaptive because investment in a new conception may risk one's own survival, future reproductive opportunities, and/or current offspring survival. The hypothalamic-pituitary-ovarian (HPO) axis is the principal neuroendocrine pathway by which the human female modulates reproductive functioning according to the changing conditions in her habitat. Adjustments of reproductive investment in a potential conception are manifested in temporal and individual variation in ovarian cycle length, ovulation, hormone levels, and the probability of conception. Understanding the extent and causes of adaptive and non-adaptive variation in ovarian functioning is fundamental to ascertaining the proximate and remote determinants of human reproductive patterns. In this review I consider what is known and what still needs to be learned of the ecology of women's reproductive biology, beginning with a discussion of the principal explanatory frameworks in HRE and the biometry of ovarian functioning. Turning next to empirical studies, it is evident that marked variation between cycles, women, and populations is the norm rather than an aberration. Other than woman's age, the determinants of these differences are not well characterized, although developmental conditions, dietary practices, genetic variation, and epigenetic mechanisms have all been hypothesized to play some role. It is also evident that the reproductive functioning of women born and living in arduous conditions is not analogous to that of athletes, dieters, or even the lower end of the "normal range" of HPO functioning in wealthier populations. Contrary to the presumption that humans have low fecundity and an inefficient reproductive system, both theory and present evidence suggest that we may actually have very high fecundity and a reproductive system that has evolved to be flexible, ruthlessly efficient and, most importantly, strategic. Yrbk Phys Anthropol 52:95,136, 2009. © 2009 Wiley-Liss, Inc. [source] Post-traumatic stress disorder: a review of psychobiology and pharmacotherapyACTA PSYCHIATRICA SCANDINAVICA, Issue 6 2001I. Hageman Objective: To review the literature on the psychobiology and pharmacotherapy of PTSD. Method: Relevant studies were identified by literature searches (Pub-med, web of science) and through reference lists. The search was ended by May 2001. Results: There is evidence of involvement of opioid, glutamatergic, GABAergic, noradrenergic, serotonergic and neuroendocrine pathways in the pathophysiology of PTSD. Medications shown to be effective in double-blind placebo-controlled trials includes selective serotonin reuptake inhibitors, reversible and irreversible MAO-inhibitors, tricyclic antidepressants and the anticonvulsant lamotrigine. Still more agents appear promising in open-label trials. Conclusion: The complexity of the psychobiology is reflected by the difficulties in treating the disorder. According to the present knowledge, suggestions for drug treatment of PTSD are made. [source] |