Neurite Extension (neurite + extension)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


Rho-associated kinase (ROCK) inhibitor, Y27632, promotes neurite outgrowth in PC12 cells in the absence of NGF

JOURNAL OF NEUROCHEMISTRY, Issue 2002
R. Nath
Neurite extension and retraction are very important processes in the formation of neuronal networks. A strategy for fostering axonal regrowth/regeneration of injured adult neurons is attractive therapeutically for various diseases such as traumatic brain injury, stroke and Alzheimer's disease. The Rho family of small GTPases, including Rac and Cdc42 have been shown to be involved in promoting neurite outgrowth. On the other hand, activation of RhoA induces collapse of growth cone and retraction of neurites. Rho-associated kinase (ROCK) an effector molecule of RhoA, is downstream of a number of axonal outgrowth and growth cone collapse inhibition mechanisms. In the present study, we sought to identify the role of ROCK in neurite outgrowth in PC12 cells. Y27632, a specific inhibitor of ROCK, induced a robust increase in neurite outgrowth in these cells within 24,48 h as visualized by phase contrast microscopy. Staining with FITC-tubulin or phalloidin show extended neurites in PC12 cells treated with Y27632, comparable to that with 100 ng/mL of NGF. Assessment of other biochemical markers of neurite outgrowth such as GAP43, neurofilament and tyrosine hydroxylase phosphorylation further indicates that inhibition of ROCK in PC12 cells causes differentiation of these cells to a neuronal phenotype. [source]


Fascin1 is dispensable for mouse development but is favorable for neonatal survival

CYTOSKELETON, Issue 8 2009
Yoshihiko Yamakita
Abstract Fascin1, an actin-bundling protein, has been demonstrated to be critical for filopodia formation in cultured cells, and thus is believed to be vital in motile activities including neurite extension and cell migration. To test whether fascin1 plays such essential roles within a whole animal, we have generated and characterized fascin1-deficient mice. Unexpectedly, fascin1-deficient mice are viable and fertile with no major developmental defect. Nissl staining of serial coronal brain sections reveals that fascin1-deficient brain is grossly normal except that knockout mouse brain lacks the posterior region of the anterior commissure neuron and has larger lateral ventricle. Fascin1-deficient, dorsal root ganglion neurons are able to extend neurites in vitro as well as those from wild-type mice, although fascin1-deficient growth cones are smaller and exhibit fewer and shorter filopodia than wild-type counterparts. Likewise, fascin1-deficient, embryonic fibroblasts are able to assemble filopodia, though filopodia are fewer, shorter and short-lived. These results indicate that fascin1-mediated filopodia assembly is dispensable for mouse development. Cell Motil. Cytoskeleton 2009. © 2009 Wiley-Liss, Inc. [source]


Neurotrophic activities of trk receptors conserved over 600 million years of evolution

DEVELOPMENTAL NEUROBIOLOGY, Issue 1 2004
Gad Beck
Abstract The trk family of receptor tyrosine kinases is crucial for neuronal survival in the vertebrate nervous system, however both C. elegans and Drosophila lack genes encoding trks or their ligands. The only invertebrate representative of this gene family identified to date is Ltrk from the mollusk Lymnaea. Did trophic functions of trk receptors originate early in evolution, or were they an innovation of the vertebrates? Here we show that the Ltrk gene conserves a similar exon/intron order as mammalian trk genes in the region encoding defined extracellular motifs, including one exon encoding a putative variant immunoglobulin-like domain. Chimeric receptors containing the intracellular and transmembrane domains of Ltrk undergo ligand-induced autophosphorylation followed by MAP kinase activation in transfected cells. The chimeras are internalized similarly to TrkA in PC12 cells, and their stimulation leads to differentiation and neurite extension. Knock-down of endogenous Ltrk expression compromises outgrowth and survival of Lymnaea neurons cultured in CNS-conditioned medium. Thus, Ltrk is required for neuronal survival, suggesting that trophic activities of the trk receptor family originated before the divergence of molluscan and vertebrate lineages approximately 600 million years ago. © 2004 Wiley Periodicals, Inc. J Neurobiol 60: 12,20, 2004 [source]


A putative role for cell cycle-related proteins in microtubule-based neuroplasticity

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 6 2009
Stefanie Schmetsdorf
Abstract Cyclins and cyclin-dependent kinases (Cdks) are the main components that control the orderly progression through cell cycle. In the mature nervous system, terminally differentiated neurons are permanently withdrawn from cell cycle, as mitotic quiescence is essential for the functional stability of the complexly wired neuronal system. Recently, we characterized the expression and colocalization of cyclins and Cdks in terminally differentiated pyramidal neurons. The functional impact of the expression of cell cycle-related proteins in differentiated neurons, however, has not been elucidated yet. In the present study, we show by immunoelectron microscopy and immunobiochemical methods an association of cyclins and Cdks with the microtubule network. Cyclins D, E, A and B as well as Cdks 1, 2 and 4 were also found to be associated with the microtubule-associated protein tau. Cyclin/Cdk complexes, in addition, exhibit kinase activity towards tau. In vitro, downregulation of cyclins and Cdks by a siRNA approach and by pharmacological inhibition promotes neurite extension. Taken together, these results indicate that the expression of cell cycle-related proteins in terminal differentiated neurons is associated with physiological functions beyond cell cycle control that might be involved in microtubule-based mechanisms of neuroplasticity. [source]


Fabrication of Density Gradients of Biodegradable Polymer Microparticles and Their Use in Guiding Neurite Outgrowth

ADVANCED FUNCTIONAL MATERIALS, Issue 10 2010
Xiaoran Li
Abstract A new method for generating both continuous and discrete density gradients in microparticles of biodegradable polymers via an electrospray technique is reported. The gradients are generated by spatially varying the deposition time of electrosprayed microparticles. The substrate coated with a density gradient of microparticles has varying surface roughness, offering a unique system for studying the effect of physical cues on neurite outgrowth from dorsal root ganglia. An optimal surface roughness for promoting neuron adhesion and neurite extension in vitro is obtained. Furthermore, this capability of approach is extended to generate a gradient of fluorescein isothiocyanate labeled bovine serum albumin by encapsulating it in the polymer microparticles in situ during electrospray. Taken together, this new class of substrates with gradients of microparticle density can potentially be used in various biomedical applications such as neural tissue engineering. [source]


Isolation and expression of a novel mitochondrial septin that interacts with CRMP/CRAM in the developing neurones

GENES TO CELLS, Issue 2 2003
Shusuke Takahashi
Background: Collapsin response mediator proteins (CRMPs) and CRAM belong to the unc-33 gene family which is implicated in axon guidance and outgrowth during neural development. However, their exact roles remain largely unknown. To understand the molecular basis of CRMP/CRAM function, we have undertaken to identify CRMP/CRAM interacting proteins. Results: We have identified a novel mitochondrial septin (M-septin) as one of the CRMP/CRAM interacting proteins from the developing rat brain. M-septin is a major, alternatively spliced variant of the H5 gene in developing mouse brain and its expression is up-regulated during the neuronal differentiation of embryonal carcinoma P19 cells. In COS-7 cells, M-septin is specifically localized to mitochondria whereas H5 is diffusely distributed to the perinuclear cytoplasm and plasma membranes. In contrast to H5, M-septin induces the mitochondrial translocation of CRAM but not CRMP2. Finally, M-Septin is found to be transiently translocated to mitochondria before the induction of the neurites and then dissociates from the mitochondria after neurite extension in P19 cells. Conclusions: Our results suggest that M-septin has a role which is distinct from H5, and together with CRMP/CRAM, may play an important role in the neuronal differentiation and axon guidance through the control of mitochondrial function. [source]


Molecular characterization of mitocalcin, a novel mitochondrial Ca2+ -binding protein with EF-hand and coiled-coil domains

JOURNAL OF NEUROCHEMISTRY, Issue 1 2006
Mitsutoshi Tominaga
Abstract Here we have identified and characterized a novel mitochondrial Ca2+ -binding protein, mitocalcin. Western blot analysis demonstrated that mitocalcin was widely expressed in mouse tissues. The expression in brain was increased during post-natal to adult development. Further analyses were carried out in newly established neural cell lines. The protein was expressed specifically in neurons but not in glial cells. Double-labeling studies revealed that mitocalcin was colocalized with mitochondria in neurons differentiated from 2Y-3t cells. In addition, mitocalcin was enriched in the mitochondrial fraction purified from the cells. Immunohistochemical studies on mouse cerebellum revealed that the expression pattern of mitocalcin in glomeruli of the internal granular and molecular layers was well overlapped by the distribution pattern of mitochondria. Immunogold electron microscopy showed that mitocalcin was associated with mitochondrial inner membrane. Overexpression of mitocalcin in 2Y-3t cells resulted in neurite extension. Inhibition of the expression in 2Y-3t cells caused suppression of neurite outgrowth and then cell death. These findings suggest that mitocalcin may play roles in neuronal differentiation and function through the control of mitochondrial function. [source]


Spatially patterned gene expression for guided neurite extension

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 4 2009
Tiffany Houchin-Ray
Abstract Axon pathfinding by localized expression of guidance molecules is critical for the proper development of the nervous system. In this report, we present a well-defined spatially patterned gene expression system to investigate neurite guidance in vitro. Nonviral gene delivery was patterned by combining substrate-mediated gene delivery with soft lithography techniques, and the amount of protein produced at the region of localized expression was varied by altering the vector concentration and the width of the pattern, highlighting the flexibility of the system. A neuronal coculture model was used to investigate responses to spatial patterns of nerve growth factor (NGF) expression. The soluble NGF gradient elicited a guidance cue, and the degree of guidance was governed by the distance a neuron was cultured from the pattern and the time between accessory cell and neuron seedings. A portion of the diffusible NGF bound to the culture surface in the extracellular space, and the surface-associated NGF supported neuron survival and neurite outgrowth. However, the surface-bound NGF gradient alone did not elicit a guidance signal, and in fact masked the guidance cue by soluble NGF gradients. Mathematical modeling of NGF diffusion was used to predict the concentration gradients, and both the absolute and fractional gradients capable of guiding neurites produced by patterned gene expression differed substantially from the values obtained with existing engineered protein gradients. Spatially patterned gene expression provides a versatile tool to investigate the factors that may promote neurite guidance. © 2008 Wiley-Liss, Inc. [source]


Interactions between the L1 cell adhesion molecule and ezrin support traction-force generation and can be regulated by tyrosine phosphorylation

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 12 2008
Takeshi Sakurai
Abstract An Ig superfamily cell-adhesion molecule, L1, forms an adhesion complex at the cell membrane containing both signaling molecules and cytoskeletal proteins. This complex mediates the transduction of extracellular signals and generates actin-mediated traction forces, both of which support axon outgrowth. The L1 cytoplasmic region binds ezrin, an adapter protein that interacts with the actin cytoskeleton. In this study, we analyzed L1,ezrin interactions in detail, assessed their role in generating traction forces by L1, and identified potential regulatory mechanisms controlling ezrin,L1 interactions. The FERM domain of ezrin binds to the juxtamembrane region of L1, demonstrated by yeast two-hybrid interaction traps and protein binding analyses in vitro. A lysine-to-leucine substitution in this domain of L1 (K1147L) shows reduced binding to the ezrin FERM domain. Additionally, in ND7 cells, the K1147L mutation inhibits retrograde movement of L1 on the cell surface that has been linked to the generation of the traction forces necessary for axon growth. A membrane-permeable peptide consisting of the juxtamembrane region of L1 that can disrupt endogenous L1,ezrin interactions inhibits neurite extension of cerebellar cells on L1 substrates. Moreover, the L1,ezrin interactions can be modulated by tyrosine phosphorylation of the L1 cytoplasmic region, namely, Y1151, possibly through Src-family kinases. Replacement of this tyrosine together with Y1176 with either aspartate or phenylalanine changes ezrin binding and alters colocalization with ezrin in ND7 cells. Collectively, these data suggest that L1,ezrin interactions mediated by the L1 juxtamembrane region are involved in traction-force generation and can be regulated by the phosphorylation of L1. © 2008 Wiley-Liss, Inc. [source]


Cyclic guanosine monophosphate signalling pathway plays a role in neural cell adhesion molecule-mediated neurite outgrowth and survival

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 4 2007
Dorte Kornerup Ditlevsen
Abstract The neural cell adhesion molecule (NCAM) plays a crucial role in neuronal development, regeneration, and synaptic plasticity associated with learning and memory consolidation. Homophilic binding of NCAM leads to neurite extension and neuroprotection in various types of primary neurons through activation of a complex network of signalling cascades, including fibroblast growth factor receptor, Src-family kinases, the mitogen-activated protein kinase pathway, protein kinase C, phosphatidylinositol-3 kinase, and an increase in intracellular Ca2+. Here we present data indicating an involvement of cyclic GMP in NCAM-mediated neurite outgrowth in both hippocampal and dopaminergic neurons and in NCAM-mediated neuroprotection of dopaminergic neurons. In addition, evidence is presented suggesting that NCAM mediates activation of cGMP via synthesis of nitric oxide (NO) by NO synthase (NOS) and activation of soluble guanylyl cyclase by NO, leading to an increased synthesis of cGMP and activation by cGMP of protein kinase G. © 2007 Wiley-Liss, Inc. [source]


Heat shock protein 27 is involved in neurite extension and branching of dorsal root ganglion neurons in vitro

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 4 2006
Kristy L. Williams
Abstract Alteration of the cytoskeleton in response to growth factors and extracellular matrix proteins is necessary for neurite growth. The cytoskeletal components, such as actin and tubulin, can be modified through interaction with other cellular proteins, including the small heat shock protein Hsp27. Our previous work suggested that Hsp27 influences neurite growth, potentially via its phosphorylation state interactions with actin. To investigate further the role of Hsp27 in neurite outgrowth of adult dorsal root ganglion (DRG) neurons, we have both down-regulated endogenous Hsp27 and expressed exogenous Hsp27. Down-regulation of Hsp27 with Hsp27 siRNA resulted in a decrease of neuritic tree length and complexity. In contrast, expression of exogenous Hsp27 in these neurons resulted in an increase in neuritic tree length and branching. Collectively, these results demonstrate that Hsp27 may play a role in neuritic growth via modulation of the actin cytoskeleton. © 2006 Wiley-Liss, Inc. [source]


Ataxin 10 induces neuritogenesis via interaction with G-protein ,2 subunit

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 7 2006
Masaaki Waragai
Abstract Spinocerebellar ataxia type 10 (SCA10) is a dominantly inherited disorder caused by an intronic ATTCT pentanucleotide repeat expansion. The ATXN10 gene encodes a novel protein, ataxin 10, known previously as E46L, which is widely expressed in the brain. Ataxin 10 deficiency has been shown recently to cause increased apoptosis in primary cerebellar cultures, thus implicated in SCA10 pathogenesis. The biologic functions of ataxin 10 remain largely unknown. By using yeast-two-hybrid screening of a human brain cDNA library, we identified the G-protein ,2 subunit (G,2) as an ataxin 10 binding partner, and the interaction was confirmed by coimmunoprecipitation and colocalization in mammalian cells in culture. Overexpression of ataxin 10 in PC12 cells induced neurite extension and enhanced neuronal differentiation induced by nerve growth factor (NGF). Moreover, coexpression of ataxin 10 and G,2 potently activated the Ras-MAP kinase-Elk-1 cascade. Dominant negative Ras or inhibitor of MEK-1/2 (U0126) aborted this activation, and blocked morphologic changes, whereas inhibition of TrkA receptor by K252a had no effects. Our data suggest that the ataxin 10-G,2 interaction represents a novel mechanism for inducing neuritogenesis in PC12 cells by activating the Ras-MAP kinase-Elk-1 cascade. © 2006 Wiley-Liss, Inc. [source]


Molecular cloning and expression regulation of PRG-3, a new member of the plasticity-related gene family

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2004
Nicolai E. Savaskan
Abstract Phospholipid-mediated signalling on neurons provokes diverse responses such as neurogenesis, pattern formation and neurite remodelling. We have recently uncovered a novel set of molecules in the mammalian brain, named plasticity-related genes (PRGs), which mediate lipid phosphate phosphatase activity and provide evidence for their involvement in mechanisms of neuronal plasticity. Here, we report on a new member of the vertebrate-specific PRG family, which we have named plasticity-related gene-3 (PRG-3). PRG-3 is heavily expressed in the brain and shows a specific expression pattern during brain development where PRG-3 expression is found predominantly in neuronal cell layers and is already expressed at embryonic day 16. In the mature brain, strongest PRG-3 expression occurs in the hippocampus and cerebellum. Overexcitation of neurons induced by kainic acid leads to a transient down-regulation of PRG-3. Furthermore, PRG-3 is expressed on neurite extensions and promotes neurite growth and a spreading-like cell body in neuronal cells and COS-7 cells. In contrast to previously described members of the PRG family, PRG-3 does not perform its function through enzymatic phospholipid degradation. In summary, our findings feature a new member of the PRG family which shows dynamic expression regulation during brain development and neuronal excitation. [source]


Characterization and role of Helix contactin-related proteins in cultured Helix pomatia neurons

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 2 2009
C. Milanese
Abstract We report on the structural and functional properties of the Helix contactin-related proteins (HCRPs), a family of closely related glycoproteins previously identified in the nervous system of the land snail Helix pomatia through antibodies against the mouse F3/contactin glycoprotein. We focus on HCRP1 and HCRP2, soluble FNIII domains-containing proteins of 90 and 45 kD bearing consensus motifs for both N- and O-glycosylation. Using the anti-HCRPs serum, we find secreted HCRPs in Helix nervous tissue isotonic extracts and in culture medium conditioned by Helix ganglia. In addition, we demonstrate expression of HCRPs on neuronal soma and on neurite extensions. Functionally, in Helix neurons, the antisense HCRP2 mRNA counteracts neurite elongation, and the recombinant HCRP2 protein exerts a strong positive effect on neurite growth when used as substrate. These data point to HCRPs as novel neurite growth-promoting molecules expressed in invertebrate nervous tissue. © 2008 Wiley-Liss, Inc. [source]


Cell deposition system based on laser guidance

BIOTECHNOLOGY JOURNAL, Issue 9 2006
Russell K. Pirlo
Abstract We have designed a laser cell deposition system that employs the phenomenon of laser guidance to place single cells at specific points in a variety of in vitro environments. Here, we describe the components of the system: the laser optics, the deposition chamber, the microinjection cell feeding system and our custom system control software application. We discuss the requirements and challenges involved in laser guidance of cells and how our present system overcomes these challenges. We demonstrate that the patterning system is accurate within one micrometer by repeatedly depositing polymer microspheres and measuring their position. We demonstrate its ability to create highly defined living patterns of cells by creating a defined pattern of neurons with neurite extensions displaying normal function. We found that the positional accuracy of our system is smaller than the variations in cell size and pattern disruptions that occur from normal cell movement during substrate adhesion. The laser cell deposition system is a potentially useful tool that can be used to achieve site- and time-specific placement of an individual cell in a cell culture for the systematic investigation of cell-cell and cell-extracellular matrix interactions. [source]