Home About us Contact | |||
Neural Precursor Cells (neural + precursor_cell)
Selected AbstractsNeural precursor cells from a fatal human motoneuron disease differentiate despite aberrant gene expressionDEVELOPMENTAL NEUROBIOLOGY, Issue 3 2007Niklas Pakkasjärvi Abstract Precursor cells of the human central nervous system can be cultured in vitro to reveal pathogenesis of diseases or developmental disorders. Here, we have studied the biology of neural precursor cells (NPCs) from patients of lethal congenital contracture syndrome (LCCS), a severe motoneuron disease leading to prenatal death before the 32nd gestational week. LCCS fetuses are immobile because of a motoneuron defect, seen as degeneration of the anterior horn and descending tracts of the developing spinal cord. The genetic defect for the syndrome is unknown. We show that NPCs isolated postmortem from LCCS fetuses grow and are maintained in culture, but display increased cell cycle activity. Global transcript analysis of undifferentiated LCCS precursor cells present with changes in EGF-related signaling when compared with healthy age-matched human controls. Further, we show that LCCS-derived NPCs differentiate into cells of neuronal and glial lineage and that the initial differentiation is not accompanied by overt apoptosis. Cells expressing markers Islet-1 and Hb9 are also generated from the LCCS NPCs, suggesting that the pathogenic mechanism of LCCS does not directly affect the differentiation capacity or survival of the cells, but the absence of motoneurons in LCCS may be caused by a noncell autonomous mechanism. © 2007 Wiley Periodicals, Inc. Develop Neurobiol, 2007 [source] The morphological development of neurons derived from EGF- and FGF-2-driven human CNS precursors depends on their site of integration in the neonatal rat brainEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 7 2000Anne E. Rosser Abstract Neural precursor cells derived from the developing human brain were expanded in vitro under the influence of fibroblast growth factor-2 (FGF-2) and epidermal growth hormone (EGF), and were then transplanted into different regions of the neonatal rat brain. Four weeks later neurons were seen to have developed from human embryonic precursors, using a human-specific antibody to tau (htau). There were morphological differences between implanted neurons developing in the hippocampus, striatum and neocortex, which were confirmed by cell volume measurements, although no specific neurochemical phenotypes were identified. Htau-positive fibres were seen to project extensively along fibre pathways appropriate for the site of neuronal integration. This study demonstrates that, following cell division in vitro, neurons differentiating from human precursor cell populations retain the ability to respond appropriately to regional determinants present in the neonatal rat brain. This is important for the application of such cells in CNS repair strategies, in particular neural transplantation. [source] Bilirubin as a determinant for altered neurogenesis, neuritogenesis, and synaptogenesisDEVELOPMENTAL NEUROBIOLOGY, Issue 9 2009Adelaide Fernandes Abstract Elevated levels of serum unconjugated bilirubin (UCB) in the first weeks of life may lead to long-term neurologic impairment. We previously reported that an early exposure of developing neurons to UCB, in conditions mimicking moderate to severe neonatal jaundice, leads to neuritic atrophy and cell death. Here, we have further analyzed the effect of UCB on nerve cell differentiation and neuronal development, addressing how UCB may affect the viability of undifferentiated neural precursor cells and their fate decisions, as well as the development of hippocampal neurons in terms of dendritic and axonal elongation and branching, the axonal growth cone morphology, and the establishment of dendritic spines and synapses. Our results indicate that UCB reduces the viability of proliferating neural precursors, decreases neurogenesis without affecting astrogliogenesis, and increases cellular dysfunction in differentiating cells. In addition, an early exposure of neurons to UCB decreases the number of dendritic and axonal branches at 3 and 9 days in vitro (DIV), and a higher number of neurons showed a smaller growth cone area. UCB-treated neurons also reveal a decreased density of dendritic spines and synapses at 21 DIV. Such deleterious role of UCB in neuronal differentiation, development, and plasticity may compromise the performance of the brain in later life. © 2009 Wiley Periodicals, Inc. Develop Neurobiol 2009 [source] Neural precursor cells from a fatal human motoneuron disease differentiate despite aberrant gene expressionDEVELOPMENTAL NEUROBIOLOGY, Issue 3 2007Niklas Pakkasjärvi Abstract Precursor cells of the human central nervous system can be cultured in vitro to reveal pathogenesis of diseases or developmental disorders. Here, we have studied the biology of neural precursor cells (NPCs) from patients of lethal congenital contracture syndrome (LCCS), a severe motoneuron disease leading to prenatal death before the 32nd gestational week. LCCS fetuses are immobile because of a motoneuron defect, seen as degeneration of the anterior horn and descending tracts of the developing spinal cord. The genetic defect for the syndrome is unknown. We show that NPCs isolated postmortem from LCCS fetuses grow and are maintained in culture, but display increased cell cycle activity. Global transcript analysis of undifferentiated LCCS precursor cells present with changes in EGF-related signaling when compared with healthy age-matched human controls. Further, we show that LCCS-derived NPCs differentiate into cells of neuronal and glial lineage and that the initial differentiation is not accompanied by overt apoptosis. Cells expressing markers Islet-1 and Hb9 are also generated from the LCCS NPCs, suggesting that the pathogenic mechanism of LCCS does not directly affect the differentiation capacity or survival of the cells, but the absence of motoneurons in LCCS may be caused by a noncell autonomous mechanism. © 2007 Wiley Periodicals, Inc. Develop Neurobiol, 2007 [source] Induction of endogenous neural precursors in mouse models of spinal cord injury and diseaseEUROPEAN JOURNAL OF NEUROLOGY, Issue 8 2005M. F. Azari Adult neural precursor cells (NPCs) in the mammalian central nervous system (CNS) have been demonstrated to be responsive to conditions of injury and disease. Here we investigated the response of NPCs in mouse models of spinal cord disease [motor neuron disease (MND)] with and without sciatic nerve axotomy, and spinal cord injury (SCI). We found that neither axotomy, nor MND alone brought about a response by Nestin-positive NPCs. However, the combination of the two resulted in mobilization of NPCs in the spinal cord. We also found that there was an increase in the number of NPCs following SCI which was further enhanced by systemic administration of the neuregulatory cytokine, leukaemia inhibitory factor (LIF). NPCs were demonstrated to differentiate into astrocytes in axotomized MND mice. However, significant differentiation into the various neural cell phenotypes was not demonstrated at 1 or 2 weeks following SCI. These data suggest that factors inherent to injury mechanisms are required for induction of an NPC response in the mammalian spinal cord. [source] Maintenance of the relative proportion of oligodendrocytes to axons even in the absence of BAX and BAKEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2009Kumi Kawai Abstract Highly purified oligodendroglial lineage cells from mice lacking functional bax and bak genes were resistant to apoptosis after in-vitro differentiation, indicating an essential role of the intrinsic apoptotic pathway in apoptosis of oligodendrocytes in the absence of neurons (axons) and other glial cells. These mice therefore provide a valuable tool with which to evaluate the significance of the intrinsic apoptotic pathway in regulating the population sizes of oligodendrocytes and oligodendroglial progenitor cells. Quantitative analysis of the optic nerves and the dorsal columns of the spinal cord revealed that the absolute numbers of mature oligodendrocytes immunolabeled for aspartoacylase and adult glial progenitor cells expressing NG2 chondroitin sulfate proteoglycan were increased in both white matter tracts of adult bax/bak -deficient mice and, to a lesser extent, bax -deficient mice, except that there was no increase in NG2-positive progenitor cells in the dorsal columns of these strains of mutant mice. These increases in mature oligodendrocytes and progenitor cells in bax/bak -deficient mice were unexpectedly proportional to increases in numbers of axons in these white matter tracts, thus retaining the oligodendroglial lineage to axon ratios of at most 1.3-fold of the physiological numbers. This is in contrast to the prominent expansion in numbers of neural precursor cells in the subventricular zones of these adult mutant mice. Our study indicates that homeostatic control of cell number is different for progenitors of the oligodendroglial and neuronal lineages. Furthermore, regulatory mechanism(s) operating in addition to apoptotic elimination through the intrinsic pathway, appear to prevent the overproduction of highly mitotic oligodendroglial progenitor cells. [source] Isolation and characterization of neural precursor cells from the Sox1,GFP reporter mouseEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 7 2005Perrine Barraud Abstract We have made use of a reporter mouse line in which enhanced green fluorescence protein (GFP) is inserted into the Sox1 locus. We show that the GFP reporter is coexpressed with the Sox1 protein as well as with other known markers for neural stem and progenitor cells, and can be used to identify and isolate these cells by fluorescence-activated cell sorting (FACS) from the developing or adult brain and from neurosphere cultures. All neurosphere-forming cells with the capacity for multipotency and self-renewal reside in the Sox1,GFP-expressing population. Thus, the Sox1,GFP reporter system is highly useful for identification, isolation and characterization of neural stem and progenitor cells, as well as for the validation of alternative means for isolating neural stem and progenitor cells. Further, transplantation experiments show that Sox1,GFP cells isolated from the foetal brain give rise to neurons and glia in vivo, and that many of the neurons display phenotypic characteristics appropriate for the developing brain region from which the Sox1,GFP precursors were derived. On the other hand, Sox1,GFP cells isolated from the adult subventricular zone or expanded neurosphere cultures gave rise almost exclusively to glial cells following transplantation. Thus, not all Sox1,GFP cells possess the same capacity for neuronal differentiation in vivo. [source] Survival of neural precursor cells in growth factor-poor environment: Implications for transplantation in chronic diseaseGLIA, Issue 4 2006Ofira Einstein Abstract A key issue for therapeutic neural stem cell transplantation in chronic diseases is the long-term survival of transplanted cells in the brain. The normal adult central nervous system does not support the survival of transplanted cells. Presumably, the limited availability of trophic factors maintains the survival of resident cells but is insufficient for supporting the survival of transplanted cells. Specifically, in multiple sclerosis, a chronic relapsing disease, it would be necessary to maintain long-term survival of transplanted cells through phases of relapses and remissions. It may be beneficial to transplant cells as early as possible, in a form that will keep their survival independent of tissue support and ready for immediate mobilization upon tissue demand during disease relapse. In the present study, we examined whether, in the form of neurospheres, multipotential neural precursor cells (NPCs) survive in a growth factor-poor environment while maintaining their potential to respond to environmental cues. We found that after removal of growth factors from the culture medium of neurospheres in vitro, NPC proliferation decreased significantly, but most cells survived for a prolonged time and maintained their stem cell characteristics. After re-exposure to growth factors, neurosphere cells resumed proliferation and could differentiate along neural lineages. Furthermore, neurospheres, but not single NPCs, that were transplanted into the brain ventricles of intact animals survived within the ventricles for at least a month and responded to induction of experimental autoimmune encephalomyelitis and brain inflammation by extensive migration into the brain white matter and differentiated into glial lineage cells. © 2005 Wiley-Liss, Inc. [source] Modulation of bone morphogenic protein signalling alters numbers of astrocytes and oligodendroglia in the subventricular zone during cuprizone-induced demyelinationJOURNAL OF NEUROCHEMISTRY, Issue 1 2010Holly S. Cate J. Neurochem. (2010) 115, 11,22. Abstract The adult subventricular zone (SVZ) is a potential source of precursor cells to replace neural cells lost during demyelination. To better understand the molecular events that regulate neural precursor cell responsiveness in this context we undertook a microarray and quantitative PCR based analysis of genes expressed within the SVZ during cuprizone-induced demyelination. We identified an up-regulation of the genes encoding bone morphogenic protein 4 (BMP4) and its receptors. Immunohistochemistry confirmed an increase in BMP4 protein levels and also showed an increase in phosphorylated SMAD 1/5/8, a key component of BMP4 signalling, during demyelination. In vitro analysis revealed that neural precursor cells isolated from demyelinated animals, as well as those treated with BMP4, produce more astrocytes. Similarly, there were increased numbers of astrocytes in vivo within the SVZ during demyelination. Intraventricular infusion of Noggin, an endogenous antagonist of BMP4, during cuprizone-induced demyelination reduced pSMAD1/5/8, decreased astrocyte numbers and increased oligodendrocyte numbers in the SVZ. Our results suggest that lineage commitment of SVZ neural precursor cells is altered during demyelination and that BMP signalling plays a role in this process. [source] Conserved fate and function of ferumoxides-labeled neural precursor cells in vitro and in vivoJOURNAL OF NEUROSCIENCE RESEARCH, Issue 5 2010Mikhal E. Cohen Abstract Recent progress in cell therapy research for brain diseases has raised the need for non-invasive monitoring of transplanted cells. For therapeutic application in multiple sclerosis, transplanted cells need to be tracked both spatially and temporally, in order to assess their migration and survival in the host tissue. Magnetic resonance imaging (MRI) of superparamagnetic iron oxide-(SPIO)-labeled cells has been widely used for high resolution monitoring of the biodistribution of cells after transplantation into the central nervous system (CNS). Here we labeled mouse glial-committed neural precursor cells (NPCs) with the clinically approved SPIO contrast agent ferumoxides and examined their survival and differentiation in vitro, as well as their functional response to environmental signals present within the inflamed brain of experimental autoimmune encephalomyelitis (EAE) mice in vivo. We show that ferumoxides labeling does not affect NPC survival and pluripotency in vitro. Following intracerebroventricular (ICV) transplantation in EAE mice, ferumoxides-labeled NPCs responded to inflammatory cues in a similar fashion as unlabeled cells. Ferumoxides-labeled NPCs migrated over comparable distances in white matter tracts and differentiated equally into the glial lineages. Furthermore, ferumoxides-labeled NPCs inhibited lymph node cell proliferation in vitro, similarly to non-labeled cells, suggesting a preserved immunomodulatory function. These results demonstrate that ferumoxides-based MRI cell tracking is well suited for non-invasive monitoring of NPC transplantation. © 2009 Wiley-Liss, Inc. [source] Description of distributed features of the nestin-containing cells in brains of adult mice: A potential source of neural precursor cellsJOURNAL OF NEUROSCIENCE RESEARCH, Issue 5 2010Renshi Xu Abstract The distribution of neural precursor cells (NPCs) in adult mice brain has so far not been described. Therefore, we investigated the distribution of NPCs by analyzing the nestin-containing cells (NCCs) in distinct brain regions of adult nestin second-intron enhancer-controlled LacZ reporter transgenic mice through LacZ staining. Results showed that NCCs existed in various regions of adult mouse brain. In cerebellum, the greatest number of NCCs existed in cortex of the simple lobule, followed by cortex of the cerebellar lobule. In olfactory bulb, NCCs were most numerous in the granular cell layer, followed by the mitral cell layer and the internal plexiform, glomerular, and external plexiform layers. In brain nuclei (nu), NCCs were most numerous in the marginal nu, followed by the brainstem and diencephalon nu. NCCs in sensory nu of brainstem were more numerous than in motor nu, and NCCs in the dorsal of sensory nu were more numerous than in the ventral part. In brain ventricle systems, NCCs were largely distributed in the center of and external to the lateral ventricle, the inferior part of the third ventricle, the dorsal and inferior parts of the fourth ventricle, and the gray matter around the cerebral aqueduct. NCCs in the left vs. right brain were not significantly different. These data collectively indicate that NCCs were extensively distributed in the cerebellum and olfactory bulb, the partial nu of the marginal system, the partial brain nu adjacent to brain ventricle systems, the subependymal zone, and the cerebral cortex around the marginal lobe and were a potential source of NPCs. © 2009 Wiley-Liss, Inc. [source] O-linked ,-N-acetylglucosaminylation in mouse embryonic neural precursor cellsJOURNAL OF NEUROSCIENCE RESEARCH, Issue 16 2009Makoto Yanagisawa Abstract In neural stem cells (NSCs), glycoconjugates and carbohydrate antigens are known not only to serve as excellent cell surface biomarkers for cellular differentiation and development but also to play important functional roles in determining cell fate. O-linked ,-N-acetylglucosamine (O-GlcNAc), which modifies nuclear and cytoplasmic proteins on the serine and threonine residues, is also expected to play an important regulatory role. It is not known, however, whether O-GlcNAc is expressed in NSCs or what the function of this expression is. In this study, we evaluated the patterns and possible functions of O-GlcNAcylation in mouse embryonic neuroepithelial cells (NECs), which are known to be rich in NSCs. We confirmed the expression of O-GlcNAc transferase, O-GlcNAcase, and several O-GlcNAcylated proteins in NECs. Treatment of NECs with O-GlcNAcase inhibitors, PUGNAc and streptozotocin, induced robust accumulation of O-GlcNAc in NECs and reduction of number of NECs. In O-GlcNAcase inhibitor-treated NECs, the Ras-mitogen-activated protein kinase pathway and the phosphatidylinositol 3-kinase-Akt pathway, important for proliferation and survival, respectively, were intact, but caspase-3, an executioner for cell death, was activated. These results suggest the possibility that O-GlcNAc is involved in cell death signaling in NECs. Furthermore, in NECs, we identified an O-GlcNAc-modified protein, Sp1 transcription factor. Our study is the first to evaluate expression and functions of O-GlcNAc in NECs. © 2009 Wiley-Liss, Inc. [source] MRG15, a component of HAT and HDAC complexes, is essential for proliferation and differentiation of neural precursor cellsJOURNAL OF NEUROSCIENCE RESEARCH, Issue 7 2009Meizhen Chen Abstract Neurogenesis during development depends on the coordinated regulation of self-renewal and differentiation of neural precursor cells (NPCs). Chromatin regulation is a key step in self-renewal activity and fate decision of NPCs. However, the molecular mechanism or mechanisms of this regulation is not fully understood. Here, we demonstrate for the first time that MRG15, a chromatin regulator, is important for proliferation and neural fate decision of NPCs. Neuroepithelia from Mrg15 -deficient embryonic brain are much thinner than those from control, and apoptotic cells increase in this region. We isolated NPCs from Mrg15 -deficient and wild-type embryonic whole brains and produced neurospheres to measure the self-renewal and differentiation abilities of these cells in vitro. Neurospheres culture from Mrg15 -deficient embryo grew less efficiently than those from wild type. Measurement of proliferation by means of BrdU (bromodeoxyuridine) incorporation revealed that Mrg15 -deficient NPCs have reduced proliferation ability and apoptotic cells do not increase during in vitro culture. The reduced proliferation of Mrg15 -deficient NPCs most likely accounts for the thinner neuroepithelia in Mrg15 -deficient embryonic brain. Moreover, we also demonstrate Mrg15 -deficient NPCs are defective in differentiation into neurons in vitro. Our results demonstrate that MRG15 has more than one function in neurogenesis and defines a novel role for this chromatin regulator that integrates proliferation and cell-fate determination in neurogenesis during development. © 2008 Wiley-Liss, Inc. [source] Adult human spinal cord harbors neural precursor cells that generate neurons and glial cells in vitroJOURNAL OF NEUROSCIENCE RESEARCH, Issue 9 2008C. Dromard Abstract Adult human and rodent brains contain neural stem and progenitor cells, and the presence of neural stem cells in the adult rodent spinal cord has also been described. Here, using electron microscopy, expression of neural precursor cell markers, and cell culture, we investigated whether neural precursor cells are also present in adult human spinal cord. In well-preserved nonpathological post-mortem human adult spinal cord, nestin, Sox2, GFAP, CD15, Nkx6.1, and PSA-NCAM were found to be expressed heterogeneously by cells located around the central canal. Ultrastructural analysis revealed the existence of immature cells close to the ependymal cells, which display characteristics of type B and C cells found in the adult rodent brain subventricular region, which are considered to be stem and progenitor cells, respectively. Completely dissociated spinal cord cells reproducibly formed Sox2+ nestin+ neurospheres containing proliferative precursor cells. On differentiation, these generate glial cells and ,-aminobutyric acid (GABA)-ergic neurons. These results provide the first evidence for the existence in the adult human spinal cord of neural precursors with the potential to differentiate into neurons and glia. They represent a major interest for endogenous regeneration of spinal cord after trauma and in degenerative diseases. © 2008 Wiley-Liss, Inc. [source] Late human cytomegalovirus (HCMV) proteins inhibit differentiation of human neural precursor cells into astrocytesJOURNAL OF NEUROSCIENCE RESEARCH, Issue 3 2007Jenny Odeberg Abstract Human cytomegalovirus (HCMV) is the most common cause of congenital infections in developed countries, with an incidence varying between 0.5,2.2%. Such infection may be the consequence of either a primary infection or reactivation of a latent infection in the mother and the outcome may vary from asymptomatic to severe brain disorders. Moreover, infants that are asymptomatic at the time of birth may still develop neurologic sequelae at a later age. Our hypothesis is that infection of stem cells of the central nervous system by HCMV alters the proliferation, differentiation or migration of these cells, and thereby gives rise to the brain abnormalities observed. We show that infection of human neural precursor cells (NPCs) with the laboratory strain Towne or the clinical isolate TB40 of HCMV suppresses the differentiation of these cells into astrocytes even at an multiplicity of infection (MOI) as low as 0.1 (by 33% and 67%, respectively). This inhibition required active viral replication and the expression of late HCMV proteins. Infection as late as 24 hr after the onset of differentiation, but not after 72 hr, also prevented the maturation of infected cultures. Furthermore, in cultures infected with TB40 (at an MOI of 1), approximately 54% of the cells were apoptotic and cell proliferation was significantly attenuated. Clearly, HCMV can reduce the capacity of NPCs to differentiate into astrocytes and this effect may provide part of the explanation for the abnormalities in brain development associated with congenital HCMV infection. © 2006 Wiley-Liss, Inc. [source] Dynamic expression of de novo DNA methyltransferases Dnmt3a and Dnmt3b in the central nervous systemJOURNAL OF NEUROSCIENCE RESEARCH, Issue 6 2005Jian Feng Abstract To explore the role of DNA methylation in the brain, we examined the expression pattern of de novo DNA methyltransferases Dnmt3a and Dnmt3b in the mouse central nervous system (CNS). By comparing the levels of Dnmt3a and Dnmt3b mRNAs and proteins in the CNS, we showed that Dnmt3b is detected within a narrow window during early neurogenesis, whereas Dnmt3a is present in both embryonic and postnatal CNS tissues. To determine the precise pattern of Dnmt3a and Dnmt3b gene expression, we carried out X-gal histochemistry in transgenic mice in which the lacZ marker gene is knocked into the endogenous Dnmt3a or Dnmt3b gene locus (Okano et al. [1999] Cell 99:247,257). In Dnmt3b - lacZ transgenic mice, X-gal-positive cells are dispersed across the ventricular zone of the CNS between embryonic days (E) 10.5 and 13.5 but become virtually undetectable in the CNS after E15.5. In Dnmt3a - lacZ mice, X-gal signal is initially observed primarily in neural precursor cells within the ventricular and subventricular zones between E10.5 and E17.5. However, from the newborn stage to adulthood, Dnmt3a X-gal signal was detected predominantly in postmitotic CNS neurons across all the regions examined, including olfactory bulb, cortex, hippocampus, striatum, and cerebellum. Furthermore, Dnmt3a signals in CNS neurons increase during the first 3 weeks of postnatal development and then decline to a relatively low level in adulthood, suggesting that Dnmt3a may be of critical importance for CNS maturation. Immunocytochemistry experiments confirmed that Dnmt3a protein is strongly expressed in neural precursor cells, postmitotic CNS neurons, and oligodendrocytes. In contrast, glial fibrillary acidic protein-positive astrocytes exhibit relatively weak or no Dnmt3a immunoreactivity in vitro and in vivo. Our data suggest that whereas Dnmt3b may be important for the early phase of neurogenesis, Dnmt3a likely plays a dual role in regulating neurogenesis prenatally and CNS maturation and function postnatally. © 2005 Wiley-Liss, Inc. [source] Neural precursors attenuate autoimmune encephalomyelitis by peripheral immunosuppressionANNALS OF NEUROLOGY, Issue 3 2007Ofira Einstein MSc Objective Intracerebroventricular or intravenous (IV) injection of neural precursor cells (NPCs) attenuates experimental autoimmune encephalomyelitis (EAE), the animal model of multiple sclerosis. Although stem cell therapy was introduced initially for cell replacement, we examine here whether NPCs possess immunomodulatory effects. Methods We examined the effects of systemic administration of NPCs on central nervous system (CNS) inflammation in EAE and the interactions between NPCs and T cells in vitro and in vivo. Results IV NPC therapy decreased significantly CNS inflammation and tissue injury and attenuated the clinical severity of EAE. IV-injected NPCs could not be found in the CNS but were detected in lymphoid organs. Coculture experiments showed that NPCs inhibited the activation and proliferation of lymph node,derived T cells in response to CNS-derived antigens and to nonspecific polyclonal stimuli. The relevance of NPC/lymph node cell interactions in vivo was further demonstrated when lymph node cells obtained from IV NPC-treated mice exhibited poor encephalitogenicity on transfer to naive mice and caused a markedly milder EAE compared with those obtained from nontreated mice. Interpretation IV administration of neural precursors inhibits EAE by a peripheral immunosuppressive effect. Our findings suggest a profound bystander inhibitory effect of NPCs on T-cell activation and proliferation in the lymph nodes, leading to amelioration of EAE. Ann Neurol 2006 [source] Regulation of glial development by cystatin CJOURNAL OF NEUROCHEMISTRY, Issue 1 2007Akiko Hasegawa Abstract Cystatin C (CysC) is an endogenous cysteine proteases inhibitor produced by mature astrocytes in the adult brain. Previously we isolated CysC as a factor activating the glial fibrillary acidic protein (GFAP) promoter, and showed that CysC is expressed in astrocyte progenitors during development. Here we show that protease inhibitor activity increased daily in conditioned medium, and that this activity was mainly a result of CysC released from primary cultured cells. Human CysC added to the culture medium of primary brain cells increased the number of GFAP-positive and nestin-positive cells. Human CysC also increased the number of neurospheres formed from embryonic brain, and thus it increases the number of neural stem/precursor cells in a manner similar to glycosylated rat CysC. The addition of a neutralizing antibody, on the other hand, greatly decreased the number of GFAP and glutamate aspartate transporter (GLAST)-positive astrocytes. This decrease was reversed by the addition of CysC but not by another cysteine protease inhibitor. Thus, the promotion of astrocyte development by CysC appears to be independent of its protease inhibitor activity. The antibody increased the number of oligodendrocytes and their precursors. Therefore, CysC modifies glial development in addition to its activity against neural stem/precursor cells. [source] Human neural stem cells ameliorate autoimmune encephalomyelitis in non-human primates,ANNALS OF NEUROLOGY, Issue 3 2009Stefano Pluchino MD Objective Transplanted neural stem/precursor cells (NPCs) display peculiar therapeutic plasticity in vivo. Although the replacement of cells was first expected as the prime therapeutic mechanism of stem cells in regenerative medicine, it is now clear that transplanted NPCs simultaneously instruct several therapeutic mechanisms, among which replacement of cells might not necessarily prevail. A comprehensive understanding of the mechanism(s) by which NPCs exert their therapeutic plasticity is lacking. This study was designed as a preclinical approach to test the feasibility of human NPC transplantation in an outbreed nonhuman primate experimental autoimmune encephalomyelitis (EAE) model approximating the clinical and complex neuropathological situation of human multiple sclerosis (MS) more closely than EAE in the standard laboratory rodent. Methods We examined the safety and efficacy of the intravenous (IV) and intrathecal (IT) administration of human NPCs in common marmosets affected by human myelin oligodendrocyte glycoprotein 1-125,induced EAE. Treatment commenced upon the occurrence of detectable brain lesions on a 4.7T spectrometer. Results EAE marmosets injected IV or IT with NPCs accumulated lower disability and displayed increased survival, as compared with sham-treated controls. Transplanted NPCs persisted within the host central nervous system (CNS), but were also found in draining lymph nodes, for up to 3 months after transplantation and exhibited remarkable immune regulatory capacity in vitro. Interpretation Herein, we provide the first evidence that human CNS stem cells ameliorate EAE in nonhuman primates without overt side effects. Immune regulation (rather than neural differentiation) is suggested as the major putative mechanism by which NPCs ameliorate EAE in vivo. Our findings represent a critical step toward the clinical use of human NPCs in MS. Ann Neurol 2009;66:343,354 [source] |