Neural Patterning (neural + patterning)

Distribution by Scientific Domains


Selected Abstracts


Anterior,posterior patterning of neural differentiated embryonic stem cells by canonical Wnts, Fgfs, Bmp4 and their respective antagonists

DEVELOPMENT GROWTH & DIFFERENTIATION, Issue 8 2009
Marijke Hendrickx
Embryonic stem (ES) cells are pluripotent and can differentiate into every cell type of the body. Next to their potential in regenerative medicine, they are excellent tools to study embryonic development. In this work the processes of neural induction and neural patterning along the antero-posterior (A/P) body axis are studied and evidence suggests a two step mechanism for these events. First, neural induction occurs by default in the primitive ectoderm, forming anterior neural tissue and thereafter, a series of factors can posteriorize this anterior neurectoderm. In a gain-of-function/loss-of-function approach using mouse ES cells, we show that Fgf2 has the strongest caudalizing potential of all Fgfs tested. Furthermore, Bmp4 and Wnt3a, but not Wnt1, can caudalize the neurectodermal cells. The effect of the antagonists of these factors was also examined and though Dkk1 and Noggin clearly have an effect that opposes that of Wnt3a and Bmp4 respectively, they fail to anteriorize the neurectoderm. The patterning effect of SU5402, an Fgf receptor inhibitor, was rather limited. These data confirm that in the mouse, two steps are involved in neural patterning and we show that while Fgf4, Fgf8 and Wnt1 have no strong patterning effect, Fgf2, Wnt3a and Bmp4 are strong posteriorizing factors. [source]


Role of VEGF and tissue hypoxia in patterning of neural and vascular cells recruited to the embryonic heart

DEVELOPMENTAL DYNAMICS, Issue 11 2009
Hongbin Liu
Abstract We hypothesized that oxygen gradients and hypoxia-responsive signaling may play a role in the patterning of neural or vascular cells recruited to the developing heart. Endothelial progenitor and neural cells are recruited to and form branched structures adjacent to the relatively hypoxic outflow tract (OFT) myocardium from stages 27,32 (ED6.5,7.5) of chick development. As determined by whole mount confocal microscopy, the neural and vascular structures were not anatomically associated. Adenoviral delivery of a VEGF trap dramatically affected the remodeling of the vascular plexus into a coronary tree while neuronal branching was normal. Both neuronal and vascular branching was diminished in the hearts of embryos incubated under hyperoxic conditions. Quantitative analysis of the vascular defects using our recently developed VESGEN program demonstrated reduced small vessel branching and increased vessel diameters. We propose that vascular and neural patterning in the developing heart share dependence on tissue oxygen gradients but are not interdependent. Developmental Dynamics 238:2760,2769, 2009. © 2009 Wiley-Liss, Inc. [source]


Expression analysis of chick Wnt and frizzled genes and selected inhibitors in early chick patterning

DEVELOPMENTAL DYNAMICS, Issue 3 2004
Susan C. Chapman
Abstract Wnt signaling is an important component in patterning the early embryo and specifically the neural plate. Studies in Xenopus, mouse, and zebrafish have shown that signaling by members of the Wnt family of secreted signaling factors, their Frizzled receptors and several inhibitors (sFRP1, sFRP2, sFRP3/Frzb1, Crescent/Frzb2, Dkk1, and Cerberus) are involved. However, very little is known about the expression of genes in the Wnt signaling pathway during early anterior neural patterning in chick. We have performed an expression analysis at neural plate stages of several Wnts, Frizzled genes, and Wnt signaling pathway inhibitors using in situ hybridization. The gene expression patterns of these markers are extremely dynamic. We have identified two candidate molecules for anterior patterning of the neural plate, Wnt1 and Wnt8b, which are expressed in the rostral ectoderm at these stages. Further functional studies on the roles of these markers are underway. Developmental Dynamics 229:668,676, 2004. © 2004 Wiley-Liss, Inc. [source]


Too much of a good thing: retinoic acid as an endogenous regulator of neural differentiation and exogenous teratogen

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 3 2003
P. J. McCaffery
Abstract Retinoic acid (RA) is essential for both embryonic and adult growth, activating gene transcription via specific nuclear receptors. It is generated, via a retinaldehyde intermediate, from retinol (vitamin A). RA levels require precise regulation by controlled synthesis and catabolism, and when RA concentrations deviate from normal, in either direction, abnormal growth and development occurs. This review describes: (i) how the pattern of RA metabolic enzymes controls the actions of RA; and (ii) the type of abnormalities that result when this pattern breaks down. Examples are given of RA control of the anterior/posterior axis of the hindbrain, the dorsal/ventral axis of the spinal cord, as well as certain sex-specific segments of the spinal cord, using varied animal models including mouse, quail and mosquitofish. These functions are highly sensitive to abnormal changes in RA concentration. In rodents, the control of neural patterning and differentiation are disrupted when RA concentrations are lowered, whereas inappropriately high concentrations of RA result in abnormal development of cerebellum and hindbrain nuclei. The latter parallels the malformations seen in the human embryo exposed to RA due to treatment of the mother with the acne drug Accutane (13- cis RA) and, in cases where the child survives beyond birth, a particular set of behavioural anomalies can be described. Even the adult brain may be susceptible to an imbalance of RA, particularly the hippocampus. This report shows how the properties of RA as a neural induction agent and organizer of segmentation can explain the consequences of RA depletion and overexpression. [source]


Wnt signaling stabilizes the DIXDC1 protein through decreased ubiquitin-dependent degradation

CANCER SCIENCE, Issue 3 2010
Lei Wang
(Cancer Sci 2010; 101: 700,706) Wnt signaling plays key roles in development, cell growth, differentiation, polarity formation, neural development, and carcinogenesis. DIX Domain Containing 1 (DIXDC1), a novel component of the Wnt pathway, was recently cloned. DIXDC1 is the human homolog of Ccd1, a positive regulator of the Wnt signaling pathway during zebrafish neural patterning. Little has been known about DIXDC1 gene expression regulation. In the present study, we showed that the DIXDC1 protein was induced upon Wnt-3a stimulation, whereas the DIXDC1 mRNA level was not significantly increased after Wnt-3a treatment. Positive DIXDC1 staining was detected in colon cancer cells and was colocalized with ,-catenin staining. However, the DIXDC1 mRNA expression decreased in human colon cancer cells compared to the matched normal colon epithelial cells. Our further investigation showed that the DIXDC1 protein was degraded through the proteasome pathway, and the activation of canonical Wnt signaling decreased the ubiquitin-dependent degradation of both the ectopic and endogenous DIXDC1 protein. In order to explore the possible mechanism of the ubiquitination of DIXDC1, we found that the phosphorylation of DIXDC1 was inhibited by Wnt-3a. Collectively, these results indicate that canonical Wnt/,-catenin pathway activation might upregulate DIXDC1 through a post-translational mechanism by inhibiting the ubiquitin-mediated degradation of the DIXDC1 protein. [source]