Neural Development (neural + development)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


Symposium 1: Regulation of Neural Development by BMP and Activin Family Members

JOURNAL OF NEUROCHEMISTRY, Issue 2002
J. A. Kessler
The effects of BMP family members on stem cell lineage commitment depend upon the developmental age of the stem cell. BMP4 promotes apoptosis of early ventricular zone (VZ) stem cells, neuronal differentiation of later stage VZ cells, and astroglial differentiation of subventricular zone (SVZ) cells. BMP4 inhibits oligodendroglial lineage commitment at all stages of development. The effects of BMP4 in promoting commitment to a specific lineage reflect active suppression of alternate lineages by transcriptional inhibitors including ID and HEY family members and others. For example, BMP mediated increases in ID expression in SVZ stem cells suppress both oligodendroglial and neuronal differentiation. Similarly HEY 1 expression in SVZ cells suppresses neuronal differentiation, whereas HEYL expression by VZ cells inhibits glial differentiation and promotes neurogenesis. The differing effects of the BMPs on VZ and SVZ stem cells reflect also differences in the complement of transcription factors that are expressed. For example, VZ stem cells express high levels of neurogenin and HEY L whereas SVZ stem cells express lower levels of these factors but higher levels of HEY1. Thus lineage commitment by stem cells reflects interplay among stimulatory and inhibitory transcription factors, and responses to the BMPs depend upon the repertoire of transcription factors already expressed by the cell. [source]


Pre-activation of retinoid signaling facilitates neuronal differentiation of mesenchymal stem cells

DEVELOPMENT GROWTH & DIFFERENTIATION, Issue 5 2010
Yang Bi
Mesenchymal stem cells (MSCs) can differentiate into neurons in an appropriate cellular environment. Retinoid signaling pathway is required in neural development. However, the effect and mechanism through retinoid signaling regulates neuronal differentiation of MSCs are still poorly understood. Here, we report that all-trans-retinoic acid (ATRA) pre-induction improved neuronal differentiation of rat MSCs. We found that, when MSCs were exposed to different concentrations of ATRA (0.01,100 ,mol/L) for 24 h and then cultured with modified neuronal induction medium (MNM), 1 ,mol/L ATRA pre-induction significantly improved neuronal differentiation efficiency and neural-cell survival. Compared with MNM alone induced neural-like cells, ATRA/MNM induced cells expressed higher levels of Nestin, neuron specific enolase (NSE), microtubule-associated protein-2 (MAP-2), but lower levels of CD68, glial fibrillary acidic protein (GFAP), and glial cell line-derived neurotrophic factor(GDNF), also exhibited higher resting membrane potential and intracellular calcium concentration, supporting that ATRA pre-induction promotes maturation and function of derived neurons but not neuroglia cells from MSCs. Endogenous retinoid X receptors (RXR) RXR, and RXR, (and to a lesser extent, RXR,) were weakly expressed in MSCs. But the expression of RAR, and RAR, was readily detectable, whereas RAR, was undetectable. However, at 24 h after ATRA treatment, the expression of RAR,, not RAR, or RAR,, increased significantly. We further found the subnuclear redistribution of RAR, in differentiated neurons, suggesting that RAR, may function as a major mediator of retinoid signaling during neuronal differentiation from MSCs. ATRA treatment upregulated the expression of Vimentin and Stra13, while it downregulated the expression of Brachyury in MSCs. Thus, our results demonstrate that pre-activation of retinoid signaling by ATRA facilitates neuronal differentiation of MSCs. [source]


Repulsive guidance molecule/neogenin: a novel ligand-receptor system playing multiple roles in neural development

DEVELOPMENT GROWTH & DIFFERENTIATION, Issue 6 2004
Eiji Matsunaga
The repulsive guidance molecule (RGM) is a membrane-bound protein originally isolated as an axon guidance molecule in the visual system. Recently, the transmembrane protein, neogenin, has been identified as the RGM receptor. In vitro analysis with retinal explants showed that RGM repels temporal retinal axons and collapses their growth cones through neogenin-mediated signaling. However, RGM and neogenin are also broadly expressed at the early embryonic stage, suggesting that they do not only control the guidance of visual axons. Gene expression perturbation experiments in chick embryos showed that neogenin induces cell death, and its ligand, RGM, blocks the pro-apoptotic activity of neogenin. Thus, RGM/neogenin is a novel dependence ligand/receptor couple as well as an axon guidance molecular complex. [source]


The role of Pax7 in determining the cytoarchitecture of the superior colliculus

DEVELOPMENT GROWTH & DIFFERENTIATION, Issue 3 2004
Jennifer Thompson
Pax genes are a family of transcriptional regulators vital for embryonic development. One member of the family, Pax7, functions early in neural development to establish dorsal polarity of the neural tube, and continuous refinement of its expression affords regional identity to brain nuclei, in particular the superior colliculus. Pax7 expression within the superior colliculus is eventually restricted to the stratum griseum et fibrosum superficiale (SGFS), the retinorecipient layer to which the optic nerve projects. The key role of Pax7 in specification of the superior colliculus has been highlighted by misexpression studies which result in ectopic formation of superior collicular tissue with characteristic laminae innervated by retinal ganglion cell axons. Here we review the role of Pax7 in formation of the superior colliculus and discuss the possibility that Pax7 may also assist in refinement of correct topographic mapping. [source]


Manipulating gene activity in Wnt1-expressing precursors of neural epithelial and neural crest cells

DEVELOPMENTAL DYNAMICS, Issue 1 2010
Wei Hsu
Abstract Targeted gene disruption or expression often encounters lethality. Conditional approaches, permitting manipulation at desired stages, are required to overcome this problem in order to analyze gene function in later developmental processes. Wnt1 has been shown to be expressed in neural crest precursors at the dorsal midline region. However, its expression was not detected in emigrated neural crest cells, the descendants of Wnt1-expressing precursors. We have developed mouse transgenic systems to manipulate gene activity in the Wnt1-expressing precursors and their derivatives by integrating the tetracycline-dependent activation and Cre-mediated recombination methods. A new Wnt1-rtTA strain, carrying rtTA under control of Wnt1 regulatory elements, has been created for gene manipulation in a spatiotemporal-specific fashion. Together with our previously developed Wnt1-Cre;R26STOPrtTA model, these systems permit conditional gene expression and ablation in pre-migratory and/or post-migratory neural crest cells. This study demonstrated the versatility of our mouse models to achieve gene manipulation in early neural development. Developmental Dynamics 239:338,345, 2010. © 2009 Wiley-Liss, Inc. [source]


Cloning and characterization of voltage-gated calcium channel alpha1 subunits in Xenopus laevis during development

DEVELOPMENTAL DYNAMICS, Issue 11 2009
Brittany B. Lewis
Abstract Voltage-gated calcium channels play a critical role in regulating the Ca2+ activity that mediates many aspects of neural development, including neural induction, neurotransmitter phenotype specification, and neurite outgrowth. Using Xenopus laevis embryos, we describe the spatial and temporal expression patterns during development of the 10 pore-forming alpha1 subunits that define the channels' kinetic properties. In situ hybridization indicates that CaV1.2, CaV2.1, CaV2.2, and CaV3.2 are expressed during neurula stages throughout the neural tube. These, along with CaV1.3 and CaV2.3, beginning at early tail bud stages, and CaV3.1 at late tail bud stages, are detected in complex patterns within the brain and spinal cord through swimming tadpole stages. Additional expression of various alpha1 subunits was observed in the cranial ganglia, retina, olfactory epithelium, pineal gland, and heart. The unique expression patterns for the different alpha1 subunits suggests they are under precise spatial and temporal regulation and are serving specific functions during embryonic development. Developmental Dynamics 238:2891,2902, 2009. © 2009 Wiley-Liss, Inc. [source]


Comparative analysis of Gata3 and Gata2 expression during chicken inner ear development

DEVELOPMENTAL DYNAMICS, Issue 1 2007
Kersti Lilleväli
Abstract The inner ear is a complex sensory organ with hearing and balance functions. Gata3 and Gata2 are expressed in the inner ear, and to gain more insight into their roles in otic development, we made a detailed expression analysis in chicken embryos. At early stages, their expression was highly overlapping. At later stages, Gata2 expression became prominent in vestibular and cochlear nonsensory epithelia. In contrast to Gata2, Gata3 was mainly expressed in the developing sensory epithelia, reflecting the importance of this factor in the sensory,neural development of the inner ear. While the later expression patterns of both Gata3 and Gata2 were highly conserved between chicken and mouse, important differences were observed especially with Gata3 during early otic development, providing indications of divergent molecular control during placode invagination in mice and chickens. We also found indications that the regulatory hierarchy observed in mouse, where Gata3 is upstream of Gata2 and Fgf10, could be conserved in chicken. Developmental Dynamics 236:306,313, 2007. © 2006 Wiley-Liss, Inc. [source]


Comparative genomic and expression analysis of group B1 sox genes in zebrafish indicates their diversification during vertebrate evolution

DEVELOPMENTAL DYNAMICS, Issue 3 2006
Yuich Okuda
Abstract Group B1 Sox genes encode HMG domain transcription factors that play major roles in neural development. We have identified six zebrafish B1 sox genes, which include pan-vertebrate sox1a/b, sox2, and sox3, and also fish-specific sox19a/b. SOX19A/B proteins show a transcriptional activation potential that is similar to other B1 SOX proteins. The expression of sox19a and sox3 begins at approximately the 1,000-cell stage during embryogenesis and becomes confined to the future ectoderm by the shield stage. This is reminiscent of the epiblastic expression of Sox2 and/or Sox3 in amniotes. As development progresses, these six B1 sox genes display unique expression patterns that overlap distinctly from one region to another. sox19a expression is widespread in the early neuroectoderm, resembling pan-neural Sox2 expression in amniotes, whereas zebrafish sox2 shows anterior-restricted expression. Comparative genomics suggests that sox19a/b and mammalian Sox15 (group G) have an orthologous relationship and that the B1/G Sox genes arose from a common ancestral gene through two rounds of genome duplication. It seems likely, therefore, that each B1/G Sox gene has gained a distinct expression profile and function during vertebrate evolution. Developmental Dynamics 235:811,825, 2006. © 2006 Wiley-Liss, Inc. [source]


Expression and functional analysis of Tgif during mouse midline development

DEVELOPMENTAL DYNAMICS, Issue 2 2006
Jiu-Zhen Jin
Abstract The Tgif gene encodes a homeodomain protein that functions as a transforming growth factor beta (TGF-,) repressor by binding to Smad2. Mutations in the TGIF gene are associated with human holoprosencephaly, a common birth defect caused by the failure of anterior ventral midline formation. However, Smad2-mediated TGF-, signaling in the axial mesendoderm has been demonstrated to be essential for ventral midline formation, and loss of a Smad2 antagonist should in principle promote rather than inhibit ventral midline formation. This suggests a more complex mechanism for the function of TGIF in controlling ventral midline formation. To explore the role of TGIF in ventral forebrain formation and patterning, we investigated Tgif expression and function during mouse development by in situ hybridization and gene targeting. We found that Tgif is highly expressed in the anterior neural plate, consistent with the proposed neural differentiation model in which TGF-, suppression is required for normal neural differentiation. This result suggests a possible role for Tgif in anterior neural differentiation and patterning. However, targeted disruption of the Tgif gene during mouse development does not cause any detectable defects in development and growth. Both histological examination and gene expression analysis showed that Tgif,/, embryos have a normal ventral specification in the central nervous system, including the forebrain region. One interpretation of these results is that the loss of TGIF function is compensated by other TGF-, antagonists such as c-Ski and SnoN during vertebrate anterior neural development. Developmental Dynamics 235:547,553, 2006. © 2005 Wiley-Liss, Inc. [source]


Distribution of progesterone receptor immunoreactivity in the midbrain and hindbrain of postnatal rats

DEVELOPMENTAL NEUROBIOLOGY, Issue 12 2008
Princy S. Quadros
Abstract Nuclear steroid hormone receptors are powerful transcription factors and therefore have the potential to influence and regulate fundamental processes of neural development. The expression of progesterone receptors (PR) has been described in the developing forebrain of rats and mice, and the mammalian brain may be exposed to significant amounts of progesterone, either from maternal sources and/or de novo synthesis of progesterone from cholesterol within the brain. The present study examined the distribution of PR immunoreactive (PRir) cells within the midbrain and hindbrain of postnatal rats. The results demonstrate that PR is transiently expressed within the first 2 weeks of life in specific motor, sensory and reticular core nuclei as well as within midbrain dopaminergic cell groups such as the substantia nigra and the ventral tegmental area. Additionally, robust PRir was observed in cells of the lower rhombic lip, a transient structure giving rise to precerebellar nuclei. These results suggest that progestins and progesterone receptors may play a fundamental role in the postnatal development of numerous midbrain and hindbrain nuclei, including some areas implicated in human disorders. Additionally, these findings contribute to the increasing evidence that steroid hormones and their receptors influence neural development in a wide range of brain areas, including many not typically associated with reproduction or neuroendocrine function. © 2008 Wiley Periodicals, Inc. Develop Neurobiol, 2008 [source]


Activity-dependent regulation of synaptic size in Drosophila neuromuscular junctions

DEVELOPMENTAL NEUROBIOLOGY, Issue 9 2006
Hiroaki Nakayama
Abstract One of the fundamental questions in neural development is how neurons form synapses of the appropriate size for the efficient transfer of information across neural circuits. Here we investigated the mechanisms that bring about the size correlation between synapses and postsynaptic cells during development of Drosophila neuromuscular junctions (NMJs). To do this, we made use of a unique system in which two neighboring muscles (M6 and M7) are innervated by the same neurons. In mature NMJs, synaptic size on M6 is normally larger than that on M7, in accordance with the difference in muscle volume; this ensures the same extent of contraction of both muscles, and we refer to this correspondence as "matching". We found that matching was apparent in larvae 8 h after hatching, but not in newly hatched larvae despite the difference in muscle volume. When sensory inputs were suppressed by the expression of tetanus toxin in sensory neurons, matching did not occur, although synapses were able to grow. Matching was also suppressed by the inhibition of motoneuronal activity. These results suggest that matching is induced by regulating the rate of synaptic growth on M6 and M7 in an experience- and activity-dependent manner. It seems most likely that retrograde signals from the postsynaptic to the presynaptic cell convey the information about muscle cell size. We thus examined whether a candidate of retrograde signaling in NMJs, BMP signaling, is involved inmatching. However, there was no effect on matching inBMP type II receptor gene mutants, suggesting thatother experience-driven mechanisms besides BMP signaling are involved in the proper development of synapses. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006 [source]


Tonotopic gradients of Eph family proteins in the chick nucleus laminaris during synaptogenesis

DEVELOPMENTAL NEUROBIOLOGY, Issue 1 2004
Abigail L. Person
Abstract Topographically precise projections are established early in neural development. One such topographically organized network is the auditory brainstem. In the chick, the auditory nerve transmits auditory information from the cochlea to nucleus magnocellularis (NM). NM in turn innervates nucleus laminaris (NL) bilaterally. These projections preserve the tonotopy established at the level of the cochlea. We have begun to examine the expression of Eph family proteins during the formation of these connections. Optical density measurements were used to describe gradients of Eph proteins along the tonotopic axis of NL in the neuropil, the somata, and the NM axons innervating NL at embryonic day 10, when synaptic connections from NM to NL are established. At E10,11, NL dorsal neuropil expresses EphA4 at a higher concentration in regions encoding high frequency sounds, decreasing in concentration monotonically toward the low frequency (caudolateral) end. In the somata, both EphA4 and ephrin-B2 are concentrated at the high frequency end of the nucleus. These tonotopic gradients disappear between E13 and E15, and expression of these molecules is completely downregulated by hatching. The E10,11 patterns run counter to an apparent gradient in dendrite density, as indicated by microtubule associated protein 2 (MAP2) immunolabeling. Finally, ephrin-B2 is also expressed in a gradient in tissue ventral to the NL neuropil. Our findings thus suggest a possible conserved mechanism for establishing topographic projections in diverse sensory systems. These results of this study provide a basis for the functional examination of the role of Eph proteins in the formation of tonotopic maps in the brainstem. © 2004 Wiley Periodicals, Inc. J Neurobiol 60: 28,39, 2004 [source]


Testing neural models of the development of infant visual attention

DEVELOPMENTAL PSYCHOBIOLOGY, Issue 3 2002
John E. Richards
Abstract Several models of the development of infant visual attention have used information about neural development. Most of these models have been based on nonhuman animal studies and have relied on indirect measures of neural development in human infants. This article discusses methods for studying a "neurodevelopmental" model of infant visual attention using indirect and direct measures of cortical activity. We concentrate on the effect of attention on eye movement control and show how animal-based models, indirect measurement in human infants, and direct measurement of brain activity inform this model. © 2002 Wiley Periodicals, Inc. Dev Psychobiol 40: 226,236, 2002. DOI 10.1002/dev.10029 [source]


Origin of the earliest correlated neuronal activity in the chick embryo revealed by optical imaging with voltage-sensitive dyes

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2009
Yoko Momose-Sato
Abstract Spontaneous correlated neuronal activity during early development spreads like a wave by recruiting a large number of neurons, and is considered to play a fundamental role in neural development. One important and as yet unresolved question is where the activity originates, especially at the earliest stage of wave expression. In other words, which part of the brain differentiates first as a source of the correlated activity, and how does it change as development proceeds? We assessed this issue by examining the spatiotemporal patterns of the depolarization wave, the optically identified primordial correlated activity, using the optical imaging technique with voltage-sensitive dyes. We surveyed the region responsible for the induction of the evoked and spontaneous depolarization waves in chick embryos, and traced its developmental changes. The results showed that the wave initially originated in a restricted area near the obex and was generated by multiple regions at later stages. We suggest that the upper cervical cord/lower medulla near the obex is the kernel that differentiates first as the source of the correlated activity, and that regional and temporal differences in neuronal excitability might underlie the developmental profile of wave generation in early chick embryos. [source]


Characterization of TROY-expressing cells in the developing and postnatal CNS: the possible role in neuronal and glial cell development

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2006
Tomoko Hisaoka
Abstract A member of the tumor necrosis factor receptor superfamily, TROY, is expressed in the CNS of embryonic and adult mice. In the present study, we characterized TROY-expressing cells in the embryonic and postnatal forebrain. In the early embryonic forebrain, TROY was highly expressed in nestin-positive neuroepithelial cells and radial glial cells, but not in microtubule-associated protein 2-positive postmitotic neurons. During the late embryonic and postnatal development, expression of TROY was observed in radial glial cells and astrocytes, whereas its expression was not detected in neuronal lineage cells. In addition, TROY was exclusively expressed in Musashi-1-positive multipotent/glial progenitors in the postnatal subventricular zone. To investigate the functions of TROY in neural development, we overexpressed TROY in PC12 cells and established stably expressing cell clones. As expected, the signals from overexpressed TROY were constitutively transduced via the activation of the nuclear factor-,B and the c-Jun N-terminal kinase pathways in such clones. In addition, upregulation of negative basic helix,loop,helix transcription factors, HES-5 and Id2 proteins, was observed in the TROY-overexpressing clones. Interestingly, the overexpression of TROY in PC12 cells strongly inhibited nerve growth factor-induced neurite outgrowth with reduction of some markers of differentiated neurons, such as neurofilament 150 kDa and neuron-specific ,-tubulin. These findings suggest that the signaling from TROY regulates neuronal differentiation at least in part. [source]


Regulation of miRNA expression during neural cell specification

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 6 2005
Lena Smirnova
Abstract MicroRNA (miRNA) are a newly recognized class of small, noncoding RNA molecules that participate in the developmental control of gene expression. We have studied the regulation of a set of highly expressed neural miRNA during mouse brain development. Temporal control is a characteristic of miRNA regulation in C. elegans and Drosophila, and is also prominent in the embryonic brain. We observed significant differences in the onset and magnitude of induction for individual miRNAs. Comparing expression in cultures of embryonic neurons and astrocytes we found marked lineage specificity for each of the miRNA in our study. Two of the most highly expressed miRNA in adult brain were preferentially expressed in neurons (mir-124, mir-128). In contrast, mir-23, a miRNA previously implicated in neural specification, was restricted to astrocytes. mir-26 and mir-29 were more strongly expressed in astrocytes than neurons, others were more evenly distributed (mir-9, mir-125). Lineage specificity was further explored using reporter constructs for two miRNA of particular interest (mir-125 and mir-128). miRNA-mediated suppression of both reporters was observed after transfection of the reporters into neurons but not astrocytes. miRNA were strongly induced during neural differentiation of embryonic stem cells, suggesting the validity of the stem cell model for studying miRNA regulation in neural development. [source]


Characterization of a novel NCAM ligand with a stimulatory effect on neurite outgrowth identified by screening a combinatorial peptide library

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 9 2002
Lars C. B. Rønn
Abstract The neural cell adhesion molecule, NCAM, plays a key role in neural development and plasticity mediating cell adhesion and signal transduction. By screening a combinatorial library of synthetic peptides with NCAM purified from postnatal day 10 rat brains, we identified a nonapeptide, termed NCAM binding peptide 10 (NBP10) and showed by nuclear magnetic resonance analysis that it bound the NCAM IgI module of NCAM. NBP10 modulated cell aggregation as well as neurite outgrowth induced specifically by homophilic NCAM binding. Moreover, both monomeric and multimeric forms of NBP10 stimulated neurite outgrowth from primary hippocampal neurons. The neurite outgrowth response to NBP10 was inhibited by a number of compounds previously shown to inhibit neurite outgrowth induced by homophilic NCAM binding, including voltage-dependent calcium channel antagonists, suggesting that NBP10 induced neurite outgrowth by activating a signal transduction pathway similar to that activated by NCAM itself. Moreover, an inhibitor of intracellular calcium mobilization, TMB-8, prevented NBP10-induced neurite outgrowth suggesting that NCAM-dependent neurite outgrowth also requires mobilization of calcium from intracellular calcium stores in addition to calcium influx from extracellular sources. By single-cell calcium imaging we further demonstrated that NBP10 was capable of inducing an increase in intracellular calcium in PC12E2 cells. Thus, the NBP10 peptide is a new tool for the study of molecular mechanisms underlying NCAM-dependent signal transduction and neurite outgrowth, and could prove to be a useful modulator of regenerative processes in the peripheral and central nervous system. [source]


Isolation and expression of a novel mitochondrial septin that interacts with CRMP/CRAM in the developing neurones

GENES TO CELLS, Issue 2 2003
Shusuke Takahashi
Background: Collapsin response mediator proteins (CRMPs) and CRAM belong to the unc-33 gene family which is implicated in axon guidance and outgrowth during neural development. However, their exact roles remain largely unknown. To understand the molecular basis of CRMP/CRAM function, we have undertaken to identify CRMP/CRAM interacting proteins. Results: We have identified a novel mitochondrial septin (M-septin) as one of the CRMP/CRAM interacting proteins from the developing rat brain. M-septin is a major, alternatively spliced variant of the H5 gene in developing mouse brain and its expression is up-regulated during the neuronal differentiation of embryonal carcinoma P19 cells. In COS-7 cells, M-septin is specifically localized to mitochondria whereas H5 is diffusely distributed to the perinuclear cytoplasm and plasma membranes. In contrast to H5, M-septin induces the mitochondrial translocation of CRAM but not CRMP2. Finally, M-Septin is found to be transiently translocated to mitochondria before the induction of the neurites and then dissociates from the mitochondria after neurite extension in P19 cells. Conclusions: Our results suggest that M-septin has a role which is distinct from H5, and together with CRMP/CRAM, may play an important role in the neuronal differentiation and axon guidance through the control of mitochondrial function. [source]


MSI-1, a neural RNA-binding protein, is involved in male mating behaviour in Caenorhabditis elegans

GENES TO CELLS, Issue 11 2000
Akinori Yoda
Neural RNA-binding proteins are thought to play important roles in neural development and the functional regulation of postmitotic neurones by mediating post-transcriptional gene regulation. RNA-binding proteins belonging to the Musashi family are highly expressed in the nervous system; however, their roles are poorly understood. We identified a Caenorhabditis elegans Musashi homologue, MSI-1, whose RNA-recognition motifs show extensive similarity to those of Drosophila and vertebrate Musashi proteins. We isolated a msi-1 mutant and found males with this mutation to have a mating defect. C. elegans male mating behaviour includes a distinct series of steps: response to contact, backing, turning, vulva location, spicule insertion, and sperm transfer. msi-1 is required for the turning and vulva location steps. Like other Musashi family members, MSI-1 is expressed specifically in neural cells, including male-specific neurones required for turning and vulva location. However, msi-1 was not expressed in proliferating neural progenitors in C. elegans, unlike the Musashi family genes in other systems. Our results suggest that msi-1 is expressed specifically in postmitotic neurones in C. elegans. msi-1 is required for full development of male mating behaviour, possibly through regulation of msi-1 expressing neurones. [source]


Activation of nervous system development genes in bone marrow derived mesenchymal stem cells following spaceflight exposure,

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 2 2010
Massimiliano Monticone
Abstract Stalled cell division in precursor bone cells and reduced osteoblast function are considered responsible for the microgravity-induced bone loss observed during spaceflight. However, underlying molecular mechanisms remain unraveled. Having overcome technological difficulties associated with flying cells in a space mission, we present the first report on the behavior of the potentially osteogenic murine bone marrow stromal cells (BMSC) in a 3D culture system, flown inside the KUBIK aboard space mission ISS 12S (Soyuz TMA-8,+,Increment 13) from March 30 to April 8, 2006 (experiment "Stroma-2"). Flight 1g control cultures were performed in a centrifuge located within the payload. Ground controls were maintained on Earth in another KUBIK payload and in Petri dishes. Half of the cultures were stimulated with osteo-inductive medium. Differences in total RNA extracted suggested that cell proliferation was inhibited in flight samples. Affymetrix technology revealed that 1,599 genes changed expression after spaceflight exposure. A decreased expression of cell-cycle genes confirmed the inhibition of cell proliferation in space. Unexpectedly, most of the modulated expression was found in genes related to various processes of neural development, neuron morphogenesis, transmission of nerve impulse and synapse, raising the question on the lineage restriction in BMSC. J. Cell. Biochem. 111: 442,452, 2010. © 2010 Wiley-Liss, Inc. [source]


Anaplastic lymphoma kinase proteins in growth control and cancer

JOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2004
K. Pulford
The normal functions of full-length anaplastic lymphoma kinase (ALK) remain to be completely elucidated. Although considered to be important in neural development, recent studies in Drosophila also highlight a role for ALK in gut muscle differentiation. Indeed, the Drosophila model offers a future arena for the study of ALK, its ligands and signalling cascades. The discovery of activated fusion forms of the ALK tyrosine kinase in anaplastic large cell lymphoma (ALCL) has dramatically improved our understanding of the pathogenesis of these lymphomas and enhanced the pathological diagnosis of this subtype of non-Hodgkin's lymphoma (NHL). Likewise, the realisation that a high percentage of inflammatory myofibroblastic tumours express activated-ALK fusion proteins has clarified the causation of these mesenchymal neoplasms and provided for their easier discrimination from other mesenchymal-derived inflammatory myofibroblastic tumour (IMT) mimics. Recent reports of ALK expression in a range of carcinoma-derived cell lines together with its apparent role as a receptor for PTN and MK, both of which have been implicated in tumourigenesis, raise the possibility that ALK-mediated signalling could play a role in the development and/or progression of a number of common solid tumours. The therapeutic targeting of ALK may prove to have efficacy in the treatment of many of these neoplasms. © 2004 Wiley-Liss, Inc. [source]


Early steps in neural development

JOURNAL OF MORPHOLOGY, Issue 7 2006
Marc Callebaut
Abstract We studied early neurulation events in vitro by transplanting quail Hensen's node, central prenodal regions (before the nodus as such develops), or upper layer parts of it on the not yet definitively committed upper layer of chicken anti-sickle regions (of unincubated blastoderms), eventually associated with central blastoderm fragments. We could demonstrate by this quail-chicken chimera technique that after the appearance of a pronounced thickening of the chicken upper layer by the early inductive effect of neighboring endophyll, a floor plate forms by insertion of Hensen's node-derived quail cells into the median part of the groove. This favors, at an early stage, the floor plate "allocation" model that postulates a common origin for notochord and median floor plate cells from the vertebrate's secondary major organizer (Hensen's node in this case). A comparison is made with results obtained after transplantation of similar Hensen's nodes in isolated chicken endophyll walls or with previously obtained results after the use of the grafting procedure in the endophyll walls of whole chicken blastoderms. J. Morphol. © 2006 Wiley-Liss, Inc. [source]


Glial aromatization increases the expression of bone morphogenetic protein-2 in the injured zebra finch brain

JOURNAL OF NEUROCHEMISTRY, Issue 1 2008
Bradley J. Walters
Abstract In songbirds, brain injury upregulates glial aromatase. The resulting local estrogen synthesis mitigates apoptosis and enhances cytogenesis by poorly understood mechanisms. Bone morphogenetic proteins (BMPs), long studied for their role in neural development, are also neuroprotective and cytogenic in the adult brain. BMPs remain uncharacterized in songbirds, as do the mechanisms regulating their post-injury expression. We first established the expression of BMPs 2, 4, 6, and 7 in the adult zebra finch brain using RT-PCR. Next, we determined the effect of neural insult on BMP expression, by comparing BMP transcripts between injured and uninjured telencephalic hemispheres using semi-quantitative PCR. The expression of BMPs 2 and 4, but not 6 and 7, increased 24 h post-injury. To determine the influence of aromatase on BMP expression, we compared BMP expression following delivery of the aromatase inhibitor Fadrozole or vehicle into contralateral hemispheres. Fadrozole decreased BMP2, but not BMP4, expression, suggesting that aromatization may induce BMP2 expression following injury. Since BMPs are gliogenic and neurotrophic, future studies will test if the neuroprotective and cytogenic effects of aromatase upregulation are mediated by BMP2. Songbirds may be excellent models towards understanding the role of local estrogen synthesis and its downstream mechanisms on neuroprotection and repair. [source]


Cyclin-dependent kinase 5 in synaptic plasticity, learning and memory

JOURNAL OF NEUROCHEMISTRY, Issue 2 2006
Marco Angelo
Abstract Cyclin-dependent kinase 5 (Cdk5) is a serine/threonine kinase with a multitude of functions. Although Cdk5 is widely expressed, it has been studied most extensively in neurons. Since its initial characterization, the fundamental contribution of Cdk5 to an impressive range of neuronal processes has become clear. These phenomena include neural development, dopaminergic function and neurodegeneration. Data from different fields have recently converged to provide evidence for the participation of Cdk5 in synaptic plasticity, learning and memory. In this review, we consider recent data implicating Cdk5 in molecular and cellular mechanisms underlying synaptic plasticity. We relate these findings to its emerging role in learning and memory. Particular attention is paid to the activation of Cdk5 by p25, which enhances hippocampal synaptic plasticity and memory, and suggests formation of p25 as a physiological process regulating synaptic plasticity and memory. [source]


Implication of the proprotein convertase NARC-1/PCSK9 in the development of the nervous system

JOURNAL OF NEUROCHEMISTRY, Issue 3 2006
Steve Poirier
Abstract Neural apoptosis-regulated convertase-1/proprotein convertase subtilisin-kexin like-9 (NARC-1/PCSK9) is a proprotein convertase recently described to play a major role in cholesterol homeostasis through enhanced degradation of the low-density lipoprotein receptor (LDLR) and possibly in neural development. Herein, we investigated the potential involvement of this proteinase in the development of the CNS using mouse embryonal pluripotent P19 cells and the zebrafish as models. Time course quantitative RT,PCR analyses were performed following retinoic acid (RA)-induced neuroectodermal differentiation of P19 cells. Accordingly, the mRNA levels of NARC-1/PCSK9 peaked at day 2 of differentiation and fell off thereafter. In contrast, the expression of the proprotein convertases subtilisin kexin isozyme 1/site 1 protease and Furin was unaffected by RA, whereas that of PC5/6 and PC2 increased within and/or after the first 4 days of the differentiation period respectively. This pattern was not affected by the cholesterogenic transcription factor sterol regulatory element-binding protein-2, which normally up-regulates NARC-1/PCSK9 mRNA levels in liver. Furthermore, in P19 cells, RA treatment did not affect the protein level of the endogenous LDLR. This agrees with the unique expression pattern of NARC-1/PCSK9 in the rodent CNS, including the cerebellum, where the LDLR is not significantly expressed. Whole-mount in situ hybridization revealed that the pattern of expression of zebrafish NARC-1/PCSK9 is similar to that of mouse both in the CNS and periphery. Specific knockdown of zebrafish NARC-1/PCSK9 mRNA resulted in a general disorganization of cerebellar neurons and loss of hindbrain,midbrain boundaries, leading to embryonic death at ,,96 h after fertilization. These data support a novel role for NARC-1/PCSK9 in CNS development, distinct from that in cholesterogenic organs such as liver. [source]


Colloquium C14: Integrin/ECM signaling and neural development

JOURNAL OF NEUROCHEMISTRY, Issue 2005
C. Ffrench-Constant
No abstract is available for this article. [source]


"Juvenile stress" alters maturation-related changes in expression of the neural cell adhesion molecule L1 in the limbic system: Relevance for stress-related psychopathologies

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 2 2010
M.M. Tsoory
Abstract L1 is critically involved in neural development and maturation, activity-dependent synaptic plasticity, and learning processes. Among adult rats, chronic stress protocols that affect L1 functioning also induce impaired cognitive and neural functioning and heightened anxiety reminiscent of stress-induced mood and anxiety disorders. Epidemiological studies indicate that childhood trauma is related predominantly to higher rates of both mood and anxiety disorders in adulthood and is associated with altered limbic system functioning. Exposing rats to stress during the juvenile period ("juvenile stress") has comparable effects and was suggested as a model of induced predisposition for these disorders. This study examined the effects of juvenile stress on rats aversive learning and on L1 expression soon after exposure and in adulthood, both following additional exposure to acute stress and in its absence. Adult juvenile-stressed rats exhibited enhanced cued fear conditioning, reduced novel-setting exploration, and impaired avoidance learning. Furthermore, juvenile stress increased L1 expression in the BLA, CA1, DG, and EC both soon after the stressful experience and during adulthood. It appears that juvenile stress affects the normative maturational decrease in L1 expression. The results support previous indications that juvenile stress alters the maturation of the limbic system and further support a role for L1 regulation in the mechanisms that underlie the predisposition to exhibit mood and/or anxiety disorders in adulthood. Furthermore, the findings support the "network hypothesis," which postulates that information-processing problems within relevant neural networks might underlie stress-induced mood and anxiety disorders. © 2009 Wiley-Liss, Inc. [source]


Expression of gangliosides in an immortalized neural progenitor/stem cell line

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 5 2003
Keiji Suetake
Abstract Glycosphingolipids (GSLs) are known to play important roles in cellular growth and differentiation in the nervous system. The change in expression of gangliosides is correlated with crucial developmental events and is evolutionarily conserved among many vertebrate species. The emergence of neural progenitors represents a crucial step in neural development, but little is known about the exact composition and subcellular localization of gangliosides in neural progenitor cells. The C17.2 cell line was derived after v- myc transformation of neural progenitor cells isolated from neonatal mouse cerebellar cortex. The developmental potential of C17.2 cells is similar to that of endogenous neural progenitor/stem cells in that they are multipotential and capable of differentiating into all neural cell types. We characterized the GSL composition of C17.2 cells and found the presence of only a-series gangliosides. Subcellular localization studies revealed that GM1 and GD1a are localized mainly on the plasma membrane and partly in the cytoplasm, both as punctate clusters. Reverse transcription-polymerase chain reaction revealed the absence of ST-II transcripts in C17 cells, which most likely accounts for the lack of expression of b- and c-series complex gangliosides in this cell line. These data suggest that the divergence in ganglioside expression in C17.2 cells is regulated at the transcriptional level. © 2003 Wiley-Liss, Inc. [source]


The integrin family of cell adhesion molecules has multiple functions within the CNS

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 3 2002
Richard Milner
Abstract Integrins comprise a large family of cell adhesion molecules that mediate interactions between the extracellular environment and the cytoplasm. During the last decade, analysis of the expression and function of these molecules has revealed that integrins regulate many aspects of cell behavior including cell death, proliferation, migration, and differentiation. Within the central nervous system (CNS), most of the early studies focused on the role of integrins in mediating adhesive and migratory events in two distinct processes: neural development and CNS inflammation. Interestingly, recent analysis of transgenic mice has provided some surprising results regarding the role of integrins in neural development. Furthermore, a large body of evidence now supports the idea that in addition to these well-described functions, integrins play multiple roles in the CNS, both during development and in the adult in areas as diverse as synaptogenesis, activation of microglia, and stabilization of the endothelium and blood-brain barrier. Many excellent reviews have addressed the contribution of integrins in mediating leukocyte extravasation during CNS inflammation. This review will focus on recently emerging evidence of novel and diverse roles of integrins and their ligands in the CNS during development and in the adult, in health and disease. © 2002 Wiley-Liss, Inc. [source]


Erratum: Aragonite crystalline matrix as an instructive microenvironment for neural development.

JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, Issue 2 2009
Journal of Tissue Engineering, Regenerative Medicine 2008; 2: 463-471.
[source]