Home About us Contact | |||
Nervous System. (nervous + system)
Selected AbstractsTwo Na,K-ATPase ,2 subunit isoforms are differentially expressed within the central nervous system and sensory organs during zebrafish embryogenesisDEVELOPMENTAL DYNAMICS, Issue 2 2002Johannes R. Rajarao Abstract We have identified cDNAs encoding a second zebrafish ortholog of the human Na,K-ATPase ,2 subunit. The ,2b cDNA encodes a 292 amino acid-long polypeptide with 74% identity to the previously characterized zebrafish ,2a subunit. By using a zebrafish meiotic mapping panel, we determined that the ,2b gene (atp1b2b) was tightly linked to markers on linkage group 5, whereas the ,2a gene was located on linkage group 23. In situ hybridization analysis shows that in developing zebrafish embryos, atp1b2a and atp1b2b are predominantly expressed in the nervous system. ,2a transcripts were abundantly expressed throughout brain as well as spinal cord neurons and lateral line ganglia. In contrast, ,2b mRNA expression was primarily detected in sensory organs, including retina, otic vesicles, and lateral line neuromast cells. These results suggest that the ,2a and ,2b genes play distinct roles in developing brain and sensory organs, and raise the possibility that the functions encoded by the single mammalian ,2 gene may be partitioned between the two zebrafish ,2 orthologs. © 2002 Wiley-Liss, Inc. [source] The dorsal neural tube: A dynamic setting for cell fate decisionsDEVELOPMENTAL NEUROBIOLOGY, Issue 12 2010Shlomo Krispin Abstract The dorsal neural tube first generates neural crest cells that exit the neural primordium following an epithelial-to-mesenchymal conversion to become sympathetic ganglia, Schwann cells, dorsal root sensory ganglia, and melanocytes of the skin. Following the end of crest emigration, the dorsal midline of the neural tube becomes the roof plate, a signaling center for the organization of dorsal neuronal cell types. Recent lineage analysis performed before the onset of crest delamination revealed that the dorsal tube is a highly dynamic region sequentially traversed by fate-restricted crest progenitors. Furthermore, prospective roof plate cells were shown to originate ventral to presumptive crest and to progressively relocate dorsalward to occupy their definitive midline position following crest delamination. These data raise important questions regarding the mechanisms of cell emigration in relation to fate acquisition, and suggest the possibility that spatial and/or temporal information in the dorsal neural tube determines initial segregation of neural crest cells into their derivatives. In addition, they emphasize the need to address what controls the end of neural crest production and consequent roof plate formation, a fundamental issue for understanding the separation between central and peripheral lineages during development of the nervous system. © 2010 Wiley Periodicals, Inc. Develop Neurobiol 70: 796,812, 2010. [source] The migratory behavior of immature enteric neuronsDEVELOPMENTAL NEUROBIOLOGY, Issue 1 2009M.M. Hao Abstract While they are migrating caudally along the developing gut, around 10%,20% of enteric neural crest-derived cells start to express pan-neuronal markers and tyrosine hydroxylase (TH). We used explants of gut from embryonic TH-green fluorescence protein (GFP) mice and time-lapse microscopy to examine whether these immature enteric neurons migrate and their mode of migration. In the gut of E10.5 and E11.5 TH-GFP mice, around 50% of immature enteric neurons (GFP+ cells) migrated, with an average speed of around 15 ,m/h. This is slower than the speed at which the population of enteric neural crest-derived cells advances along the developing gut, and hence neuronal differentiation seems to slow, but not necessarily halt, the caudal migration of enteric neural crest cells. Most migrating immature enteric neurons migrated caudally by extending a long-leading process followed by translocation of the cell body. This mode of migration is different from that of non-neuronal enteric neural crest-derived cells and neural crest cells in other locations, but resembles that of migrating neurons in many regions of the developing central nervous system (CNS). In migrating immature enteric neurons, a swelling often preceded the movement of the nucleus in the direction of the leading process. However, the centrosomal marker, pericentrin, was not localized to either the leading process or swelling. This seems to be the first detailed report of neuronal migration in the developing mammalian peripheral nervous system. © 2008 Wiley Periodicals, Inc. Develop Neurobiol, 2009. [source] Retinoids and nonvertebrate chordate developmentDEVELOPMENTAL NEUROBIOLOGY, Issue 7 2006Shigeki Fujiwara Abstract Retinoic acid (RA) is required for the differentiation and morphogenesis of chordate-specific features, such as the antero-posterior regionalization of the dorsal hollow nerve cord and neural crest cells. RA receptors (RARs) have been reported exclusively in chordates, suggesting that the acquisition of the RAR gene was important for chordate evolution. A scenario is presented here for the establishment of an RAR-mediated developmental regulatory system during the course of chordate evolution. In the common chordate ancestor, RAR came to control the spatial expression pattern of Hox genes in the ectoderm and endoderm along the antero-posterior axis. In these germ layers, RA was required for the differentiation of epidermal sensory neurons and the morphogenesis of pharyngeal gill slits, respectively. As the diffuse epidermal nerve net in the chordate ancestor became centralized to form the dorsal nerve cord, the epidermal Hox expression pattern was carried into the central nervous system. Because the Hox code here came to specify neuronal identity along the antero-posterior axis, RA became inextricably linked to the antero-posterior patterning of the chordate central nervous system. © 2006 Wiley Periodicals, Inc. J Neurobiol 66: 645,652, 2006 [source] The presence of active Cdk5 associated with p35 in astrocytes and its important role in process elongation of scratched astrocyteGLIA, Issue 6 2007Yi He Abstract Cyclin-dependent kinase 5 (Cdk5) is a unique member of the Cdk family; its kinase activity requires association with its activator, p35 or p39. p35 is the strongest and best characterized activator. Previous studies showed that p35 is a neuron-specific protein that restricts Cdk5 activity in neurons. However, a high expression level of Cdk5 is found in astrocytes, which raises the possibility that astrocytic Cdk5 is functional. Here we show the presence of functional Cdk5 associated with p35 in astrocytes and demonstrate its important role in process elongation of scratched astrocytes. We found that p35 and glial fibrillary acidic protein (GFAP) were co-localized in primary cultured and acute isolated brain cells. Cdk5 could form an immunocomplex with p35 and its activity was shown in pure primary cultured astrocytes. p35 was upregulated in astrocytes injured by scratching, concomitantly with upregulation of Cdk5 kinase activity. Pretreatment of the scratched astrocytes with a Cdk5 inhibitor, roscovitine, could delay wound healing by inhibiting the reorganization of tubulin, GFAP, and the extension of hypertrophic processes. Moreover, overexpression of dominant negative Cdk5 could shorten the length of extending protrusion of reactive astrocytes. Thus, our findings demonstrated that functional Cdk5, associated with p35, was expressed in astrocytes and its activity could be upregulated in reactive astrocytes, a new role of Cdk5 that has never been reported in the nervous system. The present study may provide new insight for understanding the multifunctional protein complex Cdk5/p35 in the nervous system. © 2007 Wiley-Liss, Inc. [source] Epidermal growth factor receptor expression regulates proliferation in the postnatal rat retinaGLIA, Issue 2 2006Jennie L. Close Abstract Epidermal growth factor (EGF) is known to promote proliferation of both retinal progenitors and Muller glia in vitro, but several questions remain concerning an in vivo role for this factor. In this study, we investigated whether the EGF receptor (EGFR) is necessary for the maintenance of normal levels of progenitor and Muller glial proliferation in vivo. Here, we show that (1) mice with homozygous deletion of the Egfr gene have reduced proliferation in late stages of retinal histogenesis, (2) EGF is mitogenic for Müller glia in vivo during the first two postnatal weeks in the rodent retina, (3) the effectiveness of EGF as a Müller glial mitogen declines in parallel with the decline in EGFR expression as the retina matures, and (4) following damage to the retina from continuous light exposure, EGFR expression is up-regulated in Müller glia to levels close to those in the neonatal retina, resulting in a renewed mitotic response to EGF. Together with previous results from other studies, these data indicate that the downregulation of a growth factor receptor is one mechanism by which glial cells maintain mitotic quiescence in the mature nervous system. © 2006 Wiley-Liss, Inc. [source] Effects of antenatal magnesium sulfate and corticosteroid therapy on sleep states of preterm infants,RESEARCH IN NURSING & HEALTH, Issue 4 2006Beth Black Abstract This exploratory longitudinal study was designed to compare the neonatal illness severity, sleep,wake, and respiratory sleep behaviors of preterm infants whose mothers received prenatal corticosteroids and/or magnesium sulfate (MgSO4) with those of infants whose mothers did not receive these medications. The 134 infants were divided into four groups: those whose mothers received MgSO4 only, those who received steroids only, those who received both MgSO4 and steroids, and those who received neither. The groups did not differ on infant characteristics or illness severity. Infants exposed to MgSO4 had more active sleep without rapid eye movement, indicating poorly organized active sleep. The MgSO4 -only group had higher quiet sleep regularity scores and fewer state changes. These findings suggest that fetal exposure to MgSO4 may subtly affect the central nervous system. © 2006 Wiley Periodicals, Inc. Res Nurs Health 29: 269,280, 2006 [source] Life-span phenotypes of elav and Rbp9 in Drosophila suggest functional cooperation of the two elav-family protein genesARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY (ELECTRONIC), Issue 4 2010Gakuta Toba Abstract The ELAV family of RNA-binding proteins is involved in various aspects of the post-transcriptional regulation of gene expression, from alternative splicing to translation. The members of this family have been shown to interact with each other and have been suggested to function as homo- and/or hetero-multimers. However, the functional interactions among them have not been demonstrated in vivo. In this study, we examined the genetic interaction between elav and Rbp9, two of the three genes encoding ELAV-family proteins in Drosophila. Mutants of both elav and Rbp9 showed shorter life spans than the control, with elav showing a shorter life span than Rbp9. The survival curve of elav-Rbp9 double-mutant flies was indistinguishable from that of elav single-mutant flies, suggesting that both mutations affect longevity through the same pathway. Considering the fact that both genes are co-expressed in adult neurons, we hypothesize that ELAV and Rbp9 cooperate to maintain the functional integrity of the adult nervous system. © 2010 Wiley Periodicals, Inc. [source] |