Home About us Contact | |||
Nerve Tracts (nerve + tract)
Selected AbstractsAnterior regeneration in the hemichordate Ptychodera flavaDEVELOPMENTAL DYNAMICS, Issue 11 2008Amanda L. Rychel Abstract Ptychodera flava is a hemichordate whose anterior structures regenerate reproducibly from posterior trunk pieces when amputated. We characterized the cellular processes of anterior regeneration with respect to programmed cell death and cell proliferation, after wound healing. We found scattered proliferating cells at day 2 of regeneration using a proliferating cell nuclear antigen antibody. On day 4, most proliferating cells were associated with the nerve tract under the epidermis, and on day 6, a small proboscis derived from proliferated cells was regenerated, and a mouth had broken though the epidermis. TUNEL (terminal deoxynucleotidyl transferase,mediated deoxyuridinetriphosphate nick end-labeling) detected elevated levels of apoptosis in the endoderm that began furthest away from the region of wound healing, then moved anteriorly over 8 days. Posterior to anterior apoptosis is likely to remove digestive endoderm for later differentiation of pharyngeal endoderm. We hypothesize that P. flava regeneration is nerve dependent and that remodeling in the gut endoderm plays an important role in regeneration. Developmental Dynamics 237:3222,3232, 2008. © 2008 Wiley-Liss, Inc. [source] Meningioma presenting with only urinary symptoms which is diagnosed by magnetic resonance imaging followed by urodynamic studyINTERNATIONAL JOURNAL OF CLINICAL PRACTICE, Issue 3 2004C. Ozkurkcugil Summary Neurological tumour processes when involving bladder organs or innervations may give rise to urological symptoms. Depending on the organ or nerve tract affected, and emptying capacity of the bladder, the clinical signs manifested may be extremely varied, simulating different pathological entities that may lead to unnecessary treatment. [source] In vivo dynamics of CNS sensory arbor formation: A time-lapse study in the embryonic leechDEVELOPMENTAL NEUROBIOLOGY, Issue 1 2003Michael W. Baker Abstract In the embryo of the leech Hirudo medicinalis, afferent projections of peripheral sensory neurons travel along common nerve tracts to the CNS, where they defasciculate, branch, and arborize into separate, modality-specific synaptic laminae. Previous studies have shown that this process requires, at least in part, the constitutive and then modality-specific glycosylations of tractin, a leech L1 homologue. We report here on the dynamics of growth of these projections as obtained by examining the morphology of single growing dye-filled sensory afferents as a function of time. Using 2-photon laser-scanning microscopy of the intact developing embryo, we obtained images of individual sensory projections at 3 to 30 min intervals, over several hours of growth, and at different stages of development. The time-lapse series of images revealed a highly dynamic and maturation-state-dependent pattern of growth. Upon entering the CNS, the growth cone-tipped primary axon sprouted numerous long filopodial processes, many of which appeared to undergo repeated cycles of extension and retraction. The growth cone was transformed into a sensory arbor through the formation of secondary branches that extended within the ganglionic neuropil along the anterior-posterior axis of the CNS. Numerous tertiary and quaternary processes grew from these branches and also displayed cycles of extension and retraction. The motility of these higher-order branches changed with age, with younger afferents displaying higher densities and greater motility than older, more mature sensory arbors. Finally, coincident with a reduction in higher order projections was the appearance of concavolar structures on the secondary processes. Rows of these indentations suggest the formation of presynaptic en-passant specializations accompanying the developmental onset of synapse formation. © 2003 Wiley Periodicals, Inc. J Neurobiol 56: 41,53, 2003 [source] Myelination triggers local loss of axonal CNR/protocadherin, family protein expressionEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2004Hirofumi Morishita Abstract The cadherin-related neuronal receptor (CNR)/protocadherin (Pcdh) , family is one of the diverse protocadherin families expressed in developing axons. We observed a strong axonal expression of these proteins at late embryonic and early postnatal stages corresponding to regions where fibers had not yet been myelinated. We therefore followed the postnatal localization of CNR/Pcdh, protein in major axonal tracts, such as the internal capsule, lateral olfactory tract, and optic nerve, and found that its axonal localization was dramatically lost in parallel with the increased expression of myelin markers. Moreover, the hypomyelinated optic nerve tracts of the myelin-deficient Shiverer mouse exhibited elevated levels of CNR/Pcdh, expression. These axonal expression patterns of CNR/Pcdh, in wild-type and Shiverer mice were similar to those of growth associated protein 43 (GAP-43) and L1, both of which are associated with axonal maturation. Thus, myelination may be a trigger for the local loss of axonal CNR/Pcdh, protein, and this process may be important in the maturation of neural circuits. [source] Motor nervous system impairment persists in long-term survivors of childhood acute lymphoblastic leukemiaCANCER, Issue 9 2002Satu S. Lehtinen M.D. Abstract BACKGROUND The objective of the current study was to determine whether therapy for childhood acute lymphoblastic leukemia (ALL) results in long-lasting neurologic signs or electrophysiologic injuries within the motor tracts. METHODS Twenty-seven children who were treated for ALL were studied clinically 5 years after the cessation of therapy by means of motor-evoked potentials (MEPs) elicited by magnetic stimulation transcranially and peripherally. An equal number of healthy children matched with regard to age, gender, and height served as the control group. RESULTS The MEP latencies to the hands and legs elicited by stimulation at the cortex were prolonged significantly in the children treated for ALL compared with the control group, with the differences being 2.2 milliseconds [ms] (P < 0.001) from the cortex to the thenar on the right side and 2.0 ms (P < 0.001) on the left, and 1.4 ms (P = 0.004) from the cortex to the leg on the right side and 1.3 ms (P = 0.004) on the left. Correspondingly, the MEP latency from the fifth lumbar vertebrae (LV) level to the leg also was prolonged, by 1.0 ms (P = 0.005) on the right side and 0.8 ms (P = 0.005) on the left side. The calculated latency between the cortex and the LV level was not found to be significantly longer in those patients treated for ALL compared with the healthy controls. Neurologic signs, in the form of depressed deep tendon reflexes, were observed in 8% of the patients, whereas approximately 33% of the patients were found to have fine or gross motor difficulties and dysdiadochokinesia. CONCLUSIONS Neurologic signs still persisted 5 years after therapy for ALL. Approximately 33% of the patients had fine or gross motor difficulties and dysdiadochokinesia, and demyelinative injuries to the peripheral nerve tracts were found proximally but not within the central nervous system. Cancer 2002;94:2466,73. © 2002 American Cancer Society. DOI 10.1002/cncr.10503 [source] |