Neotropical Migrants (neotropical + migrant)

Distribution by Scientific Domains


Selected Abstracts


Intraspecific genetic analysis of the summer tanager Piranga rubra: implications for species limits and conservation

JOURNAL OF AVIAN BIOLOGY, Issue 1 2007
Tiffany M. Shepherd
The summer tanager Piranga rubra is a Neotropical migrant that has experienced noted declines in the southwestern United States caused by extensive habitat loss of native riparian woodlands. This species is composed of two morphologically and behaviorally distinct taxa that traditionally have been recognized as subspecies, each occupying unique habitats in the southern part of North America. Genetic analyses of intraspecific variation are important in studies of threatened or endangered species because they can indicate whether smaller management units exist below the species level and they also provide estimates of within population variability. Using a mitochondrial DNA marker, the intraspecific genetic variation of this species is explored to determine whether the morphologically and behaviorally distinct subspecies are also genetically unique. By using traditional phylogenetic methods and building haplotype networks, results from this study indicate that the subspecies represent two phylogenetic species and should be managed as separate units. In addition, the level of gene flow among geographically isolated populations of the western subspecies is explored using Nested Clade Phylogeographic Analysis and population genetic tests. These analyses show that populations are genetically diverse and that haplotypes are shared across populations. Newly colonized populations are as diverse as older populations. This suggests that as habitat degrades in traditional breeding areas of the summer tanager, if suitable habitat elsewhere becomes available for new populations, these new colonies should be genetically diverse. [source]


Effects of drought on avian community structure

GLOBAL CHANGE BIOLOGY, Issue 8 2010
THOMAS P. ALBRIGHT
Abstract Droughts are expected to become more frequent under global climate change. Avifauna depend on precipitation for hydration, cover, and food. While there are indications that avian communities respond negatively to drought, little is known about the response of birds with differing functional and behavioural traits, what time periods and indicators of drought are most relevant, or how response varies geographically at broad spatial scales. Our goals were thus to determine (1) how avian abundance and species richness are related to drought, (2) whether community variations are more related to vegetation vigour or precipitation deviations and at what time periods relationships were strongest, (3) how response varies among avian guilds, and (4) how response varies among ecoregions with different precipitation regimes. Using mixed effect models and 1989,2005 North American Breeding Bird Survey data over the central United States, we examined the response to 10 precipitation- and greenness-based metrics by abundance and species richness of the avian community overall, and of four behavioural guilds. Drought was associated with the most negative impacts on avifauna in the semiarid Great Plains, while positive responses were observed in montane areas. Our models predict that in the plains, Neotropical migrants respond the most negatively to extreme drought, decreasing by 13.2% and 6.0% in abundance and richness, while permanent resident abundance and richness increase by 11.5% and 3.6%, respectively in montane areas. In most cases, response of abundance was greater than richness and models based on precipitation metrics spanning 32-week time periods were more supported than those covering shorter time periods and those based on greenness. While drought is but one of myriad environmental variations birds encounter, our results indicate that drought is capable of imposing sizable shifts in abundance, richness, and composition on avian communities, an important implication of a more climatically variable future. [source]


Habitat use, abundance, and persistence of Neotropical migrant birds in a habitat matrix in northeast Belize

JOURNAL OF FIELD ORNITHOLOGY, Issue 3 2010
Camila Gómez-Montes
ABSTRACT To ensure adequate protection of nonbreeding habitats used by Neotropical migratory landbirds, we must first address questions about habitat use and quality. On the Yucatan peninsula, migrants use many habitats, several of which remain unstudied, and methodological differences preclude interhabitat comparisons based on studies to date. We used distance sampling along line transects in six habitats in northeast Belize to examine use of previously unstudied habitats (e.g., salt marsh) by Neotropical migrants and to permit comparison across habitats. We calculated unadjusted and adjusted (for detectability) density estimates for individual migrant species and for all species combined to generate hypotheses about habitat quality based on the assumption that density and quality are positively correlated. Adjusted density estimates for all migrants were highest in black mangrove habitat (1799 ± 110 ind/km2), intermediate in three forest types and milpa (range 598,802 ind/km2), and lowest in salt marsh (207 ± 32.3 ind/km2). By combining density estimates with habitat availability in our study region, we estimated that evergreen forest and black mangrove supported 70% and 9% of the region's migrant population, respectively. At the species level, five of the 10 most common species had habitat preferences (>50% detections in one habitat). Given the diversity of habitat preferences among species and apparent seasonal movements, our results indicate that Neotropical migrants in northeast Belize are dependent on a matrix of interconnected habitats. RESUMEN Para asegurar la protección adecuada del hábitat no- reproductivo utilizado por aves migratorias Neotropicales terrestres, debemos responder preguntas sobre el uso y la calidad del hábitat. En la península de Yucatán, lasaves migratorias utilizan muchos hábitats, varios de los cuales aún continúan sin ser estudiados. Además las diferencias metodológicas evitan hacer comparaciones inter-hábitat basadas en los estudios que se han hecho hasta ahora. Utilizamos unmuestreo a lo largo de transectos de distancia variable, en seis hábitats, algunos previamente no estudiados (ej. ciénagas salobres), en el noreste de Belize para examinar y comparar el uso por parte de las migratorias Neotropicales, Calculamos estimados de densidad, ajustados y no ajustados (para detectabilidad), para especies particulares de migratorias y para todas las especies combinadas para generar una hipótesis sobre la calidad del hábitat basándonos en la presunción que la densidad estaría positivamente correlacionada con la calidad del hábitat. Los estimados de densidad ajustados para todos los migratorios fueron más altos en mangle negro (1799 ± 100 ind/km2), intermedios en tres tipos de bosque y milpa rango 598,802 ind/km2) y menores en ciénagas salobres (207 ± 32.3 ind/km2). Combinando los estimados de densidad con la disponibilidad de hábitats en nuestra región de estudio, estimamos que el bosque siempreverde y el mangle negro sostienen el 70% y 9% de los migratorios en la región, respectivamente. A nivel de especies, cinco de las 10 especies más comunes tienen preferencias de hábitat (>50% de las detecciones en un hábitat). Dada la diversidad de preferencias de hábitat entre especies y el aparente movimiento estacional, nuestros resultados indican que las aves migratorias Neotropicales en el noreste de Belize dependen de una matriz de hábitats interconectados. [source]


Housing developments in rural New England: effects on forest birds

ANIMAL CONSERVATION, Issue 1 2000
Daniel A. Kluza
In rural New England, forest fragmentation is caused by housing developments in forested areas. To evaluate the effects of these changes on forest birds, we compared bird assemblages between forests with different housing densities in western Massachusetts. Species occurrences and relative abundances were determined from systematic point count surveys and mist-netting at three plots in forest of low housing density (0,0.05 houses/ha) and of moderate housing density (0.60,6.70 houses/ha) in 1993 and 1994. Among guilds, Neotropical migrants and forest-interior species had significantly lower abundances in forests of moderate housing density. Abundances of ground/shrub nesting birds as a group, and of individual species such as veery (Catharus fuscescens), ovenbird (Seiurus aurocapillus) and wood thrush (Hylocichla mustelina), were greater in forest of low housing density, but blue jays (Cyanocitta cristata) were more abundant in forest of moderate housing density. Although the abundances of ground/shrub nesting birds were positively related to ground cover, this vegetation structure did not differ between forest types. Avian and mammalian nest predators may be responsible for the trends in bird abundance. Avian nest predators may recognize forest of moderate housing density as edge habitat, and this rural development may also support relatively high densities of mammalian nest predators. These trends suggest that birds of New England's relatively extensive forests may be subject to greater fragmentation effects than generally thought, as a result of increasing rural housing development within forests. [source]


Short-Term Response of Land Birds to Ponderosa Pine Restoration

RESTORATION ECOLOGY, Issue 4 2007
William L. Gaines
Abstract We monitored the short-term (>3 years) response of land birds to forest restoration treatments in Ponderosa pine forests located on the east slope of the North Cascade Range. Restoration treatments were designed to create stand structure and composition similar to pre-settlement forests, which were influenced by a frequent fire regime. Overall, avian community composition was changed as a result of the treatments. Cassin's Finch, Chipping Sparrow, and Yellow-rumped Warbler were found at higher densities in treated stands, whereas Mountain Chickadee, Western Tanager, and Red-breasted Nuthatch had higher densities in untreated stands. White-headed Woodpecker and Western Bluebird were only detected in the treated stands. Brown-headed Cowbird showed no response to treatments. We detected changes in the density of four of five foraging guilds in response to restoration treatments. Tree seedeaters, low understory and ground insectivores, and aerial insectivores all increased in density in treated stands. Overall, bark insectivores showed no density response to treatments. Tree foliage insectivore density was lower in treated than in untreated stands. Overall avian density, density of neotropical migrants, and density of some focal species were higher in treated stands. Monitoring should be continued to understand the longer-term (5,10 year) responses of land birds and to guide future forest restoration efforts. [source]