Home About us Contact | |||
Neoplastic Cell Lines (neoplastic + cell_line)
Selected AbstractsParadoxical roles for lysyl oxidases in cancer,A prospectJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 6 2007Stacey L. Payne Abstract Lysyl oxidase (LOX) is an extracellular matrix (ECM) enzyme that catalyzes the cross-linking of collagens or elastin in the extracellular compartment, thereby regulating the tensile strength of tissues. However, recent reports have demonstrated novel roles for LOX, including the ability to regulate gene transcription, motility/migration, and cell adhesion. These diverse functions have led researchers to hypothesize that LOX may have multiple roles affecting both extra- and intracellular cell function(s). Particularly noteworthy is aberrant LOX expression and activity that have been observed in various cancerous tissues and neoplastic cell lines. Both down and upregulation of LOX in tumor tissues and cancer cell lines have been described, suggesting a dual role for LOX as a tumor suppressor, as well as a metastasis promoter gene,creating a conundrum within the LOX research field. Here, we review the body of evidence on LOX gene expression, regulation, and function(s) in various cancer cell types and tissues, as well as stromal,tumor cell interactions. Lastly, we will examine putative mechanisms in which LOX facilitates breast cancer invasion and metastasis. Taken together, the literature demonstrates the increasingly important role(s) that LOX may play in regulating tumor progression and the necessity to elucidate its myriad mechanisms of action in order to identify potentially novel therapeutics. J. Cell. Biochem. 101: 1338,1354, 2007. © 2007 Wiley-Liss, Inc. [source] Evaluation of anticancer activity of the alkaloid fraction of Alstonia scholaris (Sapthaparna) in vitro and in vivoPHYTOTHERAPY RESEARCH, Issue 2 2006Ganesh Chandra Jagetia Abstract The anticancer effect of various doses of an alkaloid fraction of Sapthaparna, Alstonia scholaris (ASERS), was studied in vitro in cultured human neoplastic cell lines (HeLa, HepG2, HL60, KB and MCF-7) and in Ehrlich ascites carcinoma bearing mice. Treatment of HeLa cells with 25 µg/mL ASERS resulted in a time dependent increase in the antineoplastic activity and the greatest activity was observed when the cells were exposed to ASERS for 24 h. However, exposure of cells to ASERS for 4 h resulted in 25% viable cells and hence this time interval was considered to be the optimum time for treatment and further studies were carried out using this time. Treatment of various cells with ASERS resulted in a concentration dependent decline in the viable cells and a nadir was reached at 200 µg/mL in all the cell lines studied. The IC50 was found to be 5.53, 25, 11.16, 10 and 29.76 µg/mL for HeLa, HePG2, HL60, KB and MCF-7 cells, respectively. Similarly, administration of ASERS, once daily for 9 consecutive days to the tumor bearing mice caused a dose dependent remission of the tumor up to 240 mg/kg body weight, where the greatest antitumor effect was observed. Since 240 mg/kg ASERS showed toxic manifestations, the next lower dose of 210 mg/kg was considered as the best effective dose, in which 20% of the animals survived up to 120 days post-tumor-cell inoculation as against no survivors in the saline treated control group. The ASERS treatment resulted in a dose dependent elevation in the median survival time (MST) and the average survival time (AST) up to 240 mg/kg ASERS and declined thereafter. The surviving animals were healthy and disease free. The effect of ASERS was better than cyclophosphamide, which was used as a positive control, where all the animals succumbed to death by 40 days and the MST and AST were 19.5 and 18.3 days, respectively. The effective dose of 210 mg of ASERS was 3/10 of the LD50 dose, which increased the MST and AST up to 54 and 49.5 days, respectively. Copyright © 2006 John Wiley & Sons, Ltd. [source] Synthesis, characterization and in vitro antitumor activity of some arylantimony ferrocenecarboxylates and crystal structures of C5H5FeC5H4CO2SbPh4 and (C5H5FeC5H4CO2)2Sb(4-CH3C6H4)3APPLIED ORGANOMETALLIC CHEMISTRY, Issue 9 2003Run-Chang Liu Abstract A series of arylantimony ferrocenecarboxylates with the formula (C5H5FeC5H4CO2)nSbAr(5,n) (n = 1, 2; Ar = C6H5, 4-CH3C6H4, 3-CH3C6H4, 2-CH3C6H4, 4-ClC6H4, 4-FC6H4) were synthesized and characterized by elemental analysis, IR, 1H NMR and mass spectra. The crystal structures of (C5H5FeC5H4CO2)2Sb(4-CH3C6H4)3 and C5H5FeC5H4CO2SbPh4 were determined by X-ray diffraction. Four human neoplastic cell lines (HL-60, Bel-7402, KB and Hela) were used to screen these compounds. The results indicate that these compounds at 10 µM show certain in vitro antitumor activities. Copyright © 2003 John Wiley & Sons, Ltd. [source] 1,3-Diaryl-2-propenones and 2-Benzylidene-1,3-indandiones: A Quest for Compounds Displaying Greater Toxicity to Neoplasms than Normal CellsARCHIV DER PHARMAZIE, Issue 9 2010Hari N. Pati Abstract A series of 1,3-diaryl-2-propenones 2a,j and analogous 2-benzylidene-1,3-indandiones 3a,j were evaluated against various neoplasms and normal cells. In general, greater cytotoxic potencies and selective toxicity to human malignant cells were observed by the compounds in series 2 rather than 3. In particular, 2i emerged as a lead molecule having an average CC50 figure of 8.6,µM and a selective index value of 18. Various physicochemical features of 2a,j were correlated with the cytotoxic potencies to neoplastic cell lines which provide guidelines for expansion of this series of compounds. The enone 2i induced internucleosomal DNA fragmentation and activated caspase-3 in HL-60 cells suggesting that one of the ways in which the cytotoxicity of the compounds in series 2 is mediated towards some of the cell lines used in this study is by apoptosis. Neurotoxicity in mice was generally lower in series 2 than 3a,j. [source] |