Neonatal Diabetes Mellitus (neonatal + diabetes_mellitu)

Distribution by Scientific Domains


Selected Abstracts


Outpatient transition of an infant with permanent neonatal diabetes due to a KCNJ11 activating mutation from subcutaneous insulin to oral glyburide

PEDIATRIC DIABETES, Issue 3pt1 2008
Andrew A Bremer
Abstract:, Neonatal diabetes mellitus is rare, may either be transient or permanent, and may be caused by mutations in any of the several different genes. Until recently, most forms of permanent neonatal diabetes required lifelong subcutaneous insulin for management; however, permanent neonatal diabetes due to activating mutations in the KCNJ11 gene, which encodes the Kir6.2 protein subunit of the ATP-sensitive K+ (KATP) channel, may be amenable to oral sulfonylurea therapy. We describe a case of an 18-month-old infant with permanent neonatal diabetes due to an activating KCNJ11 mutation successfully transitioned from subcutaneous insulin therapy to oral sulfonylurea therapy in the outpatient setting. [source]


Neonatal diabetes mellitus because of pancreatic agenesis with dysmorphic features and recurrent bacterial infections

PEDIATRIC DIABETES, Issue 3pt1 2008
Doris Taha
Abstract:, Pancreatic agenesis is a rare cause of neonatal diabetes mellitus (NDM). It can be associated with malformations of the heart, the biliary tract, and the cerebellum. We report an infant with NDM because of pancreatic agenesis, intra-uterine growth retardation, dysmorphic features, and recurrent bacterial infections. He was born to healthy consanguineous parents. With adequate replacement of insulin and pancreatic enzymes, his blood glucose levels were controlled and his weight slowly increased. However, he continued to develop recurrent serious bacterial infections and died at the age of 11 months with sepsis and respiratory failure. Analysis of the PTF1A and PDX1 genes, which have been associated with congenital agenesis of the pancreas, did not reveal any mutation. Genetic abnormalities of chromosome 6 associated with transient neonatal diabetes as well as mutations in the KCNJ11 and ABCC8 genes encoding the pancreatic potassium channel were also excluded as a cause of the NDM in this patient. The association of permanent neonatal diabetes because of pancreatic agenesis, dysmorphism, and non-specific immunodeficiency is previously undescribed and may represent a new possibly autosomal recessive syndrome. [source]


Entities and frequency of neonatal diabetes: data from the diabetes documentation and quality management system (DPV)

DIABETIC MEDICINE, Issue 6 2010
J. Grulich-Henn
Diabet. Med. 27, 709,712 (2010) Abstract Aims, The aim of this study was to elucidate the entities and the frequency of neonatal diabetes mellitus (NDM) in a large representative database for paediatric diabetes patients in Germany and Austria. Methods, Based on the continuous diabetes data acquisition system for prospective surveillance (DPV), which includes 51 587 patients with onset of diabetes before the age of 18 years from 299 centres in Germany and Austria, we searched for patients with onset of diabetes mellitus in the first 6 months of life. Results, Ninety patients were identified, comprising 0.17% of all paediatric cases in the DPV registry. This represented an incidence of approximately one case in 89 000 live births in Germany. A monogenic basis for NDM was established in 30 subjects (seven UPD6, 10 KCNJ11, seven ABCC8, two FOXP3, two PDX1, one INS, one EIF2AK3). Pancreatic hypoplasia or agenesis was reported in 10 patients and seven subjects were classified as having Type 1 diabetes by their centres. Transient neonatal diabetes (TNDM) accounted for approximately 10% of all cases with NDM. No aetiology was defined in 41 subjects, which may reflect incomplete genetic testing or novel genetic aetiologies. Conclusion, Based on a large database, we identified a higher rate of NDM in Germany than has been reported previously. Full molecular genetic testing should be performed in all patients diagnosed before 6 months of age. [source]


Sulphonylurea treatment does not improve psychomotor development in children with KCNJ11 mutations causing permanent neonatal diabetes mellitus accompanied by developmental delay and epilepsy (DEND syndrome)

DIABETIC MEDICINE, Issue 10 2007
Z. Sumnik
No abstract is available for this article. [source]


Medical and developmental impact of transition from subcutaneous insulin to oral glyburide in a 15-yr-old boy with neonatal diabetes mellitus and intermediate DEND syndrome: extending the age of KCNJ11 mutation testing in neonatal DM

PEDIATRIC DIABETES, Issue 3 2010
Ali Mohamadi
Mohamadi A, Clark LM, Lipkin PH, Mahone EM, Wodka EL, Plotnick LP. Medical and developmental impact of transition from subcutaneous insulin to oral glyburide in a 15-yr-old boy with neonatal diabetes mellitus and intermediate DEND syndrome: extending the age of KCNJ11 mutation testing in neonatal DM. Mutations in the KCNJ11 gene, which encodes the Kir6.2 subunit of the ATP-sensitive potassium channel, often result in neonatal diabetes. Patients with this mutation have been successfully transitioned from insulin to sulfonylurea (SU) therapy without compromise in their glycemic control. Among patients with neonatal diabetes due to KCNJ11 mutations, approximately 25% have neurological findings including developmental delay, motor dysfunction, and epilepsy, known as DEND syndrome. There have been rare cases of juvenile patients with intermediate DEND syndrome (iDEND) reporting variable improvement in neurological function following transition from insulin to SU treatment. We describe the response to glyburide in a 15-yr-old boy with severe global developmental delays resulting from the KCNJ11 mutation V59M. The patient was discovered to have diabetes mellitus at 11.5 months of age, making this the oldest age at diagnosis of a KCNJ11 mutation-related case of neonatal diabetes. Because consensus has been to screen patients for this mutation only if younger than 6 months at the time of diagnosis, we suggest that all patients under the age of 12 months at diagnosis should receive genetic testing for monogenic causes of diabetes. [source]


Neonatal diabetes mellitus because of pancreatic agenesis with dysmorphic features and recurrent bacterial infections

PEDIATRIC DIABETES, Issue 3pt1 2008
Doris Taha
Abstract:, Pancreatic agenesis is a rare cause of neonatal diabetes mellitus (NDM). It can be associated with malformations of the heart, the biliary tract, and the cerebellum. We report an infant with NDM because of pancreatic agenesis, intra-uterine growth retardation, dysmorphic features, and recurrent bacterial infections. He was born to healthy consanguineous parents. With adequate replacement of insulin and pancreatic enzymes, his blood glucose levels were controlled and his weight slowly increased. However, he continued to develop recurrent serious bacterial infections and died at the age of 11 months with sepsis and respiratory failure. Analysis of the PTF1A and PDX1 genes, which have been associated with congenital agenesis of the pancreas, did not reveal any mutation. Genetic abnormalities of chromosome 6 associated with transient neonatal diabetes as well as mutations in the KCNJ11 and ABCC8 genes encoding the pancreatic potassium channel were also excluded as a cause of the NDM in this patient. The association of permanent neonatal diabetes because of pancreatic agenesis, dysmorphism, and non-specific immunodeficiency is previously undescribed and may represent a new possibly autosomal recessive syndrome. [source]


From congenital hyperinsulinism to diabetes mellitus: the role of pancreatic ,-cell KATP channels

PEDIATRIC DIABETES, Issue 2 2005
Khalid Hussain
Abstract:, Pancreatic ,-cell adenosine triphosphate (ATP)-sensitive potassium (KATP) channels play a pivotal role in linking glucose metabolism to regulated insulin secretion. KATP channels are hetero- octameric complexes comprising two subunits Kir6.2 and sulfonylurea receptor 1 (SUR1). Changes in the intracellular concentration of nucleotides (ATP) cause alterations in the resting and opening state of the KATP channels. Loss-of-function mutations in the genes encoding the two subunits of KATP channels lead to the most common form of congenital hyperinsulinism (CHI). This causes persistent and severe hypoglycemia in the neonatal and infancy period. CHI can cause mental retardation and epilepsy if not treated properly. On the other hand, now there is evidence of an association between polymorphisms in the Kir6.2 gene and type 2 diabetes mellitus, mutations in the Kir6.2 gene and neonatal diabetes mellitus, and mutations in the SUR1 gene and diabetes mellitus. Interestingly, for reasons that are unclear at present, mice knockout models of KATP channels are different from the human phenotype of CHI. This article is a review focusing on how abnormalities in the pancreatic ,-cell KATP channels can lead to severe hypoglycemia on the one hand and diabetes mellitus on the other. [source]