Home About us Contact | |||
Neonatal Development (neonatal + development)
Selected AbstractsNeural tube defects and impaired neural progenitor cell proliferation in G,1 -deficient miceDEVELOPMENTAL DYNAMICS, Issue 4 2010Hiroaki Okae Abstract Heterotrimeric G proteins are well known for their roles in signal transduction downstream of G protein,coupled receptors (GPCRs), and both G, subunits and tightly associated G,, subunits regulate downstream effector molecules. Compared to G, subunits, the physiological roles of individual G, and G, subunits are poorly understood. In this study, we generated mice deficient in the G,1 gene and found that G,1 is required for neural tube closure, neural progenitor cell proliferation, and neonatal development. About 40% G,1,/, embryos developed neural tube defects (NTDs) and abnormal actin organization was observed in the basal side of neuroepithelium. In addition, G,1,/, embryos without NTDs showed microencephaly and died within 2 days after birth. GPCR agonist-induced ERK phosphorylation, cell proliferation, and cell spreading, which were all found to be regulated by G,i and G,, signaling, were abnormal in G,1,/, neural progenitor cells. These data indicate that G,1 is required for normal embryonic neurogenesis. Developmental Dynamics 239:1089,1101, 2010. © 2010 Wiley-Liss, Inc. [source] Visualization of corticofugal projections during early cortical development in a ,-GFP-transgenic mouseEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2007Erin C. Jacobs Abstract The first postmitotic neurons in the developing neocortex establish the preplate layer. These early-born neurons have a significant influence on the circuitry of the developing cortex. However, the exact timing and trajectory of their projections, between cortical hemispheres and intra- and extra-cortical regions, remain unresolved. Here, we describe the creation of a transgenic mouse using a 1.3 kb golli promoter element of the myelin basic protein gene to target expression of a ,,green fluorescent protein (GFP) fusion protein in the cell bodies and processes of pioneer cortical neurons. During embryonic and early neonatal development, the timing and patterning of process extension from these neurons was examined. Analysis of ,-GFP fluorescent fibers revealed that progression of early labeled projections was interrupted unexpectedly by transient pauses at the corticostriatal and telencephalic,diencephalic boundaries before invading the thalamus just prior to birth. After birth the pioneering projections differentially invaded the thalamus, excluding some nuclei, e.g. medial and lateral geniculate, until postnatal days 10,14. Early labeled projections were also found to cross to the contralateral hemisphere as well as to the superior colliculus. These results indicate that early corticothalamic projections appear to pause before invading specific subcortical regions during development, that there is developmental regulation of innervation of individual thalamic nuclei, and that these early-generated neurons also establish early projections to commissural and subcortical targets. [source] Hippocampal mossy fiber sprouting and elevated trkB receptor expression following systemic administration of low dose domoic acid during neonatal developmentHIPPOCAMPUS, Issue 11 2007Paul B. Bernard Abstract We have previously reported that serial systemic injections of low-dose (subconvulsive) domoic acid (DOM) during early postnatal development produces changes in both behavior and hippocampal cytoarchitecture in aged rats (17 months) that are similar to those seen in existing animal models of temporal lobe epilepsy. Herein we report further hippocampal changes, consisting of mossy fiber sprouting and associated changes in the trkB receptor population in young adult (3 months) rats, and further, report that these changes show regional variation throughout the septo-temporal axis of the hippocampus. Groups of Sprague Dawley rat pups were injected daily from postnatal day 8,14 with either saline (n = 23) or 20 ,g/kg DOM (n = 25), tested for key indicators of neonatal neurobehavioral development, and then left undisturbed until ,90 days of age, at which time brain tissue was removed, hippocampi were dissected, fixed and processed using either Timm's stain to visualize hippocampal mossy fiber sprouting (MFS) or trkB immunohistochemistry to visualize full length trkB receptors. Multiple sections from dorsal, mid, and ventral hippocampus were analyzed separately and all measures were conducted using image analysis software. The results indicate significant increases in MFS in the inner molecular layer in treated animals with corresponding changes in trkB receptor density. Further we identified significant increases in trkB receptor density in the hilus of the dentate gyrus and area CA3 and report increased mossy fiber terminal density in the stratum lucidum in treated rats. The magnitude of these changes differed between sections from dorsal, mid, and ventral hippocampus. We conclude that low dose neonatal DOM produces cytoarchitectural changes indicative of abnormal development and/or synaptic plasticity that are progressive with age and show regional variation within the hippocampal formation. © 2007 Wiley-Liss, Inc. [source] Functional maturation of adult-generated granule cellsHIPPOCAMPUS, Issue 3 2006Linda S. Overstreet-Wadiche Abstract The excitability and connectivity of adult-generated granule cells dictate to what extent newborn neurons participate in the hippocampal network. These functional parameters evolve as newborn cells mature and interact with the existing circuit. The progression of granule cell maturation during neonatal development appears to be reiterated in the adult, but with some caveats. New approaches to identify and track newborn neurons are revealing the timing of this process, as well as its sensitivity to activity-dependent regulation. © 2006 Wiley-Liss, Inc. [source] Impact of selected inborn errors of metabolism on prenatal and neonatal developmentIUBMB LIFE, Issue 6 2010Sabine Illsinger Abstract In general, data regarding maturational processes of different metabolic pathways in the very vulnerable fetal and neonatal period are rare. This review is to substantiate the impact of selected inborn errors of metabolism on this critical period of life and their clinical manifestation. Significant adaptation of mitochondrial/energy-, carbohydrate-, lysosomal-, and amino acid-metabolism occurs during early prenatal and neonatal development. In utero, metabolic environment has an impact on the development of the fetus as well as fetal organ maturation. Defects of distinct metabolic pathways could therefore already be of significant relevance in utero and for clinical manifestations in the early fetal and neonatal period. Disturbances of these pathways may influence intrauterine growth and health. Production of a toxic intrauterine milieu, energy-deficiency, modification of membrane function, or disturbance of the normal intrauterine expression of genes may be responsible for fetal compromise and developmental disorders. Three categories of metabolic disorders will be discussed: the "intoxication type" (classical galactosemia, ornithine transcarbamylase deficiency, and "maternal phenylketonuria"), the "storage type" (Morbus Niemann Pick type C), and the "energy deficient type" (including long-chain fatty acid oxidation disorders, pyruvate dehydrogenase deficiency, and respiratory chain defects). For these disorders, the pathophysiology of early manifestation, special aspects regarding the prenatal and neonatal period, and diagnostic as well as therapeutic options are presented. © 2010 IUBMB IUBMB Life, 62(6): 403,413, 2010 [source] Sod2 overexpression preserves myoblast mitochondrial mass and function, but not muscle mass with agingAGING CELL, Issue 3 2009Sukkyoo Lee Summary Mice lacking superoxide dismutase-2 (SOD2 or MnSOD) die during embryonic or early neonatal development, with diffuse superoxide-induced mitochondrial damage. Although stem and progenitor cells are exquisitely sensitive to oxidant stress, they have not been well studied in MnSOD2-manipulated mouse models. Patterns of proliferation and differentiation of cultured myoblasts (muscle progenitor cells), PI3-Akt signaling during differentiation, and the maintenance of mitochondrial mass with aging using myoblasts from young (3,4 week old) and aged (27,29 months old) MnSOD2-overexpressing (Sod2- Tg) and heterozygote (Sod2+/,) mice were characterized by us. Overexpression of MnSOD2 in myoblasts had a protective effect on mitochondrial DNA abundance and some aspects of mitochondrial function with aging, and preservation of differentiation potential. Sod2 deficiency resulted in defective signaling in the PI3-Akt pathway, specifically impaired phosphorylation of Akt at Ser473 and Thr308 in young myoblasts, and decreased differentiation potential. Compared with young myoblasts, aged myoblast Akt was constitutively phosphorylated, unresponsive to mitogen signaling, and indifferent to MnSOD2 levels. These data suggest that specific sites in the PI3K-Akt pathway are more sensitive to increased superoxide levels than to the increased hydrogen peroxide levels generated in Sod2 -transgenic myoblasts. In wild-type myoblasts, aging was associated with significant loss of mitochondrial DNA relative to chromosomal DNA, but MnSOD2 overexpression was associated with maintained myoblast mitochondrial DNA with aging. [source] Biochemical and white blood cell profiles of baboon neonates consuming formulas with moderate and high dietary long-chain polyunsaturated fatty acidsJOURNAL OF MEDICAL PRIMATOLOGY, Issue 2 2008A.T. Hsieh Abstract Background, Clinical chemistry and complete blood count (CBC) values were determined in 14 term baboons (Papio species) consuming formula with moderate or high levels of dietary long-chain polyunsaturated fatty acids (LCPUFA) from 2,12 weeks of age. Method, Neonates were randomized to three groups: C: Control, no LCPUFA; L: 0.33% docosahexaenoic acid (DHA)/0.67% arachidonic acid (ARA) (w/w); L3:1.00% DHA/0.67% ARA (w/w). Blood chemistries were assessed at 6 and 12 weeks and CBC parameters were measured at 2, 4, 8, 10, 12 weeks of age. Results, Dietary LCPUFA had significant effects on serum triglyceride (C > L,L3) and calcium (L > C,L3). No other significant effects of diet were detected; pooled values are presented for all other parameters. Conclusion, These data provide longitudinal biochemical and white cell/platelet/immunological data on LCPUFA-fed baboons over the first 12 weeks of life. Data ranges are similar to reference data in cases for which values exist and hematological changes reflect trends observed during human neonatal development. [source] Endogenous extracellular serotonin modulates the spinal locomotor network of the neonatal mouseTHE JOURNAL OF PHYSIOLOGY, Issue 1 2010Mary J. Dunbar Serotonin (5-HT) can potently activate and modulate spinal locomotor circuits in a variety of species. Many of these findings have been obtained by applying serotonin exogenously to the isolated spinal cord of in vitro preparations, which has the drawback of indiscriminately activating extrasynaptic receptors and neurons. To investigate the role of endogenously released serotonin in modulating locomotor networks, the selective serotonin reuptake inhibitor citalopram was used. Fictive locomotion was elicited by either electrical stimulation of the brainstem or the sacral 4 (S4) dorsal root. The addition of 20 ,m of citalopram caudal to thoracic segment 5 (T5) had an overall inhibitory effect on the lumbar central pattern generator (CPG). Left,right and flexor,extensor coupling were significantly decreased, and there was also a phase shift in the flexor,extensor relationship. In addition, there was a significant decrease in burst amplitude. These effects were observed during both afferent and brainstem evoked fictive locomotion. When citalopram was added in the presence of 5-HT1A and 5-HT1B antagonists, the inhibitory effects were largely reversed. The remaining excitatory effects were mediated by 5-HT7 and 5-HT2 receptors. These results suggest that endogenous 5-HT release can modulate locomotor-like activity early in neonatal development. [source] Depletion of the neural precursor cell pool by glucocorticoidsANNALS OF NEUROLOGY, Issue 1 2010Shuang Yu MD Objective Glucocorticoids (GCs) are indicated for a number of conditions in obstetrics and perinatal medicine; however, the neurodevelopmental and long-term neurological consequences of early-life GC exposure are still largely unknown. Preclinical studies have demonstrated that GCs have a major influence on hippocampal cell turnover by inhibiting neurogenesis and stimulating apoptosis of mature neurons. Here we examined the fate of the limited pool of neural progenitor cells (NPCs) after GC administration during neonatal development; the impact of this treatment on hippocampal structure was also studied. Methods Phenotype-specific genetic and antigenic markers were used to identify cultured NPCs at various developmental stages; the survival of these cells was monitored after exposure to the synthetic glucocorticoid dexamethasone (DEX). In addition, the effects of neonatal DEX treatment on the neurogenic potential of the rat hippocampus were examined by monitoring the incorporation of bromodeoxyuridine and expression of Ki67 antigen at various postnatal ages. Results Multipotent nestin-expressing NPCs and T,1-tubulin,expressing immature neurons succumb to GC-induced apoptosis in primary hippocampal cultures. Neonatal GC treatment results in marked apoptosis among the proliferating population of cells in the dentate gyrus, depletes the NPC pool, and leads to significant and sustained reductions in the volume of the dentate gyrus. Interpretation Both NPCs and immature neurons in the hippocampus are sensitive to the proapoptotic actions of GCs. Depletion of the limited NPC pool during early life retards hippocampal growth, thus allowing predictions about the potential neurological and psychiatric consequences of neonatal GC exposure. ANN NEUROL 2010;67:21,30 [source] |