Nematode Species (nematode + species)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


Factors influencing the occurrence of entomopathogenic nematodes in the Central Rift Valley Region of Kenya

AFRICAN JOURNAL OF ECOLOGY, Issue 2008
S. W. Mwaniki
Abstract A survey for entomopathogenic nematodes in the central Rift valley region of Kenya was conducted at altitudes between 1800 and 3000 m above sea level and from croplands and noncropland habitats. The sampling depth was 0,30 cm. GPS (global positioning system) was used to measure site positions. One hundred and twelve soil samples were collected and entomopathogenic nematodes trapped through Galleria mellonella. Entomopathogenic nematode presence was demonstrated by G. mellonella mortality and viable ones bulked through the same host. Nematode recoveries from two consecutive extractions were 30% per extraction and 52% for cumulative extractions. Recoveries from agro ecological zones ranged between 18% and 71%. Recovery frequency was higher from disturbed cropland habitats than the stable noncrop habitats. Steinernema species were more frequent than Heterorhabditis (9 : 1). Nematode occurrence clustered at 2,3% carbon and pH 5.3,6.3 with no specific pattern demonstrated from soil types. Nematode species of the two genera from high altitudes lost their culturing ability within 1 month of isolation. There was a tendency for recovering both nematode genera at the shores of water bodies. This is the first report of Steinernema yirgalemense and S. weiseri in Kenya and of S. karii in the central Rift valley region. The Heterorhabditis species has not been confirmed yet. This has widened the genetic base of entomopathogenic nematodes from Kenya. The entomopathogenic nematodes are available for developement as biological control agents of athropod pests. [source]


Competitive interactions and persistence of two nematode species that parasitize Drosophila recens

ECOLOGY LETTERS, Issue 6 2001
S.J. Perlman
Drosophila recens is parasitized in the wild by two nematodes, Howardula aoronymphium, a host generalist, and Parasitylenchus nearcticus, a host specialist known only from D. recens. In order to understand how these two parasite species coexist, we compared their ability to infect and grow in D. recens, their effects on host fecundity and survival, and whether one parasite species was competitively superior in double infections. The specialist nematode P. nearcticus had greater rates of infection and reproduction than the generalist H. aoronymphium, and completely sterilized females in single and mixed infections. The specialist was competitively superior in mixed infections, as generalist motherworms were significantly smaller than in single infections. These results suggest that P. nearcticus might competitively exclude H. aoronymphium if D. recens were the only host available. It is likely that H. aoronymphium persists in D. recens by transmission from other, more suitable host species. [source]


Controlling western corn rootworm larvae with entomopathogenic nematodes: effect of application techniques on plant-scale efficacy

JOURNAL OF APPLIED ENTOMOLOGY, Issue 5 2010
S. Toepfer
Abstract The three larval instars of western corn rootworm (Diabrotica virgifera virgifera LeConte, Coleoptera: Chrysomelidae) feed on the roots of maize, Zea mays (L.). The effects of six application techniques on the plant-scale efficacy of the entomopathogenic nematode species, Heterorhabditis bacteriophora Poinar (Rhabditida: Heterorhabditidae), in controlling D. v. virgifera populations were assessed in seven field plot experiments in southern Hungary between 2004 and 2007. Approximately 230 000 nematodes were applied per row metre using four different stream spray techniques; or, alternatively 400 000 nematodes per square metre using two different flat spray techniques. Nematode efficacy was assessed by comparing the number of emerging adult D. v. virgifera, and root damage between treatments and untreated controls. All tested nematode application techniques reduced D. v. virgifera density by at least 50% (on average across fields and years). The highest reduction in D. v. virgifera density was 68% and occurred when nematodes were applied into the soil together with maize sowing using a fluid solid stream. Rainfall, the day before application likely increased the control efficacy of H. bacteriophora. Using the 0.00,3.00 node injury damage rating scale, we estimated that potential root damage was prevented by 25,79% when H. bacteriophora was applied. Although, H. bacteriophora can effectively be applied with all of the techniques tested, for optimum performance and minimum costs, it is suggested that the nematodes be applied as follows: (i) as a stream requiring 8,10 times less volume of water than flat sprays, or as a granule requiring no water, and (ii) into the soil when sowing maize, requiring less water than soil surface sprays and avoiding the destruction of nematodes by UV radiation and additional machinery use. [source]


Identification of the intermediate hosts of Habronema microstoma and Habronema muscae under field conditions

MEDICAL AND VETERINARY ENTOMOLOGY, Issue 3 2008
D. TRAVERSA
Abstract A polymerase chain reaction (PCR)-based assay was used for the specific detection of Habronema microstoma and Habronema muscae (Nematoda, Spirurida) in order to identify the intermediate hosts of both nematode species under field conditions. A total of 1087 netted and 165 laboratory-bred flies were tested. Flies were identified as Musca domestica Linnaeus 1758, Musca autumnalis De Geer 1776, Haematobia irritans (Linnaeus 1758), Haematobia titillans (De Geer 1907) and Stomoxys calcitrans (Linnaeus 1758) (Muscidae). Genomic DNA was extracted from pools of fly heads, thoraces and abdomens, and 703 samples were subjected to a duplex two-step semi-nested PCR assay to specifically detect diagnostic regions within the ribosomal ITS2 sequence of both H. microstoma and H. muscae. Stomoxys calcitrans specimens were positive for H. microstoma DNA and M. domestica specimens were positive for H. muscae DNA. In particular, PCR-positive samples derived from both farm-netted and laboratory-bred flies. The present study represents the first evidence of the vectorial competence of different fly species as intermediate hosts of Habronema stomachworms under field conditions. We discuss the roles of S. calcitrans and M. domestica in transmitting H. microstoma and H. muscae. [source]


Contrasting genetic structures of two parasitic nematodes, determined on the basis of neutral microsatellite markers and selected anthelmintic resistance markers

MOLECULAR ECOLOGY, Issue 24 2009
A. SILVESTRE
Abstract For the first time, the neutral genetic relatedness of natural populations of Trichostrongylid nematodes was investigated in relation to polymorphism of the ,-tubulin gene, which is selected for anthelminthic treatments. The aim of the study was to assess the contribution of several evolutionary processes: migration and genetic drift by neutral genetic markers and selection by anthelminthic treatments on the presence of resistance alleles at ,-tubulin. We studied two nematode species (Teladorsagia circumcincta and Haemonchus contortus) common in temperate climatic zones; these species are characterized by contrasting life history traits. We studied 10 isolated populations of goat nematode parasites: no infected adult goat had been exchanged after the herds were established. Beta-tubulin polymorphism was similar in these two species. One and two ,-tubulin alleles from T. circumcincta and H. contortus respectively were shared by several populations. Most of the ,-tubulin alleles were ,private' alleles. No recombination between alleles was detected in BZ-resistant alleles from T. circumcincta and H. contortus. The T. circumcincta populations have not diverged much since their isolation (FST <0.08), whereas H. contortus displayed marked local genetic differentiation (FST ranging from 0.08 to 0.18). These findings suggest that there are severe bottlenecks in the H. contortus populations, possibly because of their reduced abundance during unfavourable periods and their high reproductive rate, which allows the species to persist even after severe population reduction. Overall, the data reported contradict the hypothesis of the origin of ,-tubulin resistance alleles in these populations from a single mutational event, but two other hypotheses (recurrent mutation generating new alleles in isolated populations and the introduction of existing alleles) emerge as equally likely. [source]


Molecular detection of predation by soil micro-arthropods on nematodes

MOLECULAR ECOLOGY, Issue 7 2006
D. S. READ
Abstract The relative importance of the factors driving change in the population dynamics of nematodes in the soil is almost completely unknown. Top-down control by micro-arthropod predators may have a significant impact on nematode population dynamics. We report experiments showing that mites and Collembola were capable of reducing nematode numbers in the laboratory and were feeding on a targeted nematode species in the field. A PCR-based approach was developed for the detection of predation on three species of slug- and insect-pathogenic nematodes: Phasmarhabditis hermaphrodita, Heterorhabditis megidis and Steinernema feltiae. The collembolan Folsomia candida and the mesostigmatid mite Stratiolaelaps miles were employed as model predators to calibrate post-ingestion prey DNA detection times. Fragments of cytochrome oxidase I (COI) mtDNA were sequenced and species-specific primers were designed, amplifying 154-, 154- and 203-bp fragments for each of the nematode species. Detection times for nematode DNA within the guts of Collembola were longer than in mites, with half-lives (50% of samples testing positive) of 08.75 h and 05.03 h, respectively. F. candida significantly reduced numbers of the nematode H. megidis, with rates of predation of ,0.4 nematode infective juveniles per collembolan per hour over 10 h. Four taxa of field-caught micro-arthropod that had been exposed to the nematode P. hermaphrodita for a period of 12 h were analysed and significant numbers of three taxa tested positive. This is the first application of PCR techniques for the study of nematophagy and the first time these techniques have been used to measure predation on nematodes in the field. [source]


Evaluating high-throughput sequencing as a method for metagenomic analysis of nematode diversity

MOLECULAR ECOLOGY RESOURCES, Issue 6 2009
DOROTA L. PORAZINSKA
Abstract Nematodes play an important role in ecosystem processes, yet the relevance of nematode species diversity to ecology is unknown. Because nematode identification of all individuals at the species level using standard techniques is difficult and time-consuming, nematode communities are not resolved down to the species level, leaving ecological analysis ambiguous. We assessed the suitability of massively parallel sequencing for analysis of nematode diversity from metagenomic samples. We set up four artificial metagenomic samples involving 41 diverse reference nematodes in known abundances. Two samples came from pooling polymerase chain reaction products amplified from single nematode species. Two additional metagenomic samples consisted of amplified products of DNA extracted from pooled nematode species. Amplified products involved two rapidly evolving ~400-bp sections coding for the small and large subunit of rRNA. The total number of reads ranged from 4159 to 14771 per metagenomic sample. Of these, 82% were > 199 bp in length. Among the reads > 199 bp, 86% matched the referenced species with less than three nucleotide differences from a reference sequence. Although neither rDNA section recovered all nematode species, the use of both loci improved the detection level of nematode species from 90 to 97%. Overall, results support the suitability of massively parallel sequencing for identification of nematodes. In contrast, the frequency of reads representing individual species did not correlate with the number of individuals in the metagenomic samples, suggesting that further methodological work is necessary before it will be justified for inferring the relative abundances of species within a nematode community. [source]


A new root-knot nematode, Meloidogyne silvestris n. sp. (Nematoda: Meloidogynidae), parasitizing European holly in northern Spain

PLANT PATHOLOGY, Issue 3 2009
P. Castillo
High infection rates of European holly (Ilex aquifolium) feeder roots by an unknown root-knot nematode were found in a holly forest at Arévalo de la Sierra (Soria province) in northern Spain. Holly trees infected by the root-knot nematode showed some decline and low growth. Infected feeder roots were distorted and showed numerous root galls of large (8,10 mm) to moderate (2,3 mm) size. Morphometry, esterase and malate dehydrogenase electrophoretic phenotypes and phylogenetic trees of sequences within the ribosomal DNA (rDNA) demonstrated that this nematode species differs clearly from other previously described root-knot nematodes. Studies of host-parasite relationships showed a typical susceptible reaction in naturally infected European holly plants, but did not reproduce on a number of cultivated plants, including tomato, grapevine, princess-tree and olive. The species is described here, illustrated and named as Meloidogyne silvestris n. sp. The new root-knot nematode can be morphologically distinguished from other Meloidogyne spp. by: (i) roundish perineal pattern, dorsal arch low, with fine, sinuous cuticle striae, lateral fields faintly visible; (ii) female excretory pore level with stylet knobs, or just anterior to them, EP/ST ratio about 0ˇ8; (iii) second-stage juveniles with hemizonid located 1 to 2 annuli anterior to excretory pore and short, sub-digitate tail; and (iv) males with lateral fields composed of four incisures, with areolated outer bands. Phylogenetic trees derived from maximum parsimony analysis based on 18S, ITS1-5ˇ8S-ITS2 and D2,D3 of 28S rDNA showed that M. silvestris n. sp. can be differentiated from all described root-knot nematode species, and it is clearly separated from other species with resemblance in morphology, such as M. ardenensis, M. dunensis and M. lusitanica. [source]


Development of species-specific primers for the ectoparasitic nematode species Xiphinema brevicolle, X. diffusum, X. elongatum, X. ifacolum and X. longicaudatum (Nematoda: Longidoridae) based on ribosomal DNA sequences

ANNALS OF APPLIED BIOLOGY, Issue 3 2005
CLAUDIO M G OLIVEIRA
Summary The objective of this study was to develop single-step PCR species-specific primers that reliably discriminate four economically important Xiphinema species (X. brevicolle, X. elongatum, X. ifacolum and X. longicaudatum) and X. diffusum that is taxonomically very similar to X. brevicolle. Each species-specific reverse primer was located in the ITS-1 rDNA region and was used in combination with a universal forward primer located in the 18S rDNA gene. Primer reliability was confirmed by screening seven and 11 populations, respectively of X. diffusum and X. elongatum. Potential species-specific primers were also identified for X. brevicolle, X. longicaudatum and X. ifacolum, however too few populations of these species were available to thoroughly assess their reliability. For all species-specific primers, specificity was demonstrated by the absence of cross-reactions with 14 non-target Xiphinema species. Multiplex PCR was effective and reproducible for two (X. longicaudatum and X. ifacolum) or three (X. brevicolle, X. diffusum and X. elongatum) of the target nematode species, thus improving the applicability of the diagnostic primers. [source]