Home About us Contact | |||
Neighbouring Subunit (neighbouring + subunit)
Selected AbstractsDetermining the topology of virus assembly intermediates using ion mobility spectrometry,mass spectrometryRAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 20 2010Tom W. Knapman We have combined ion mobility spectrometry,mass spectrometry with tandem mass spectrometry to characterise large, non-covalently bound macromolecular complexes in terms of mass, shape (cross-sectional area) and stability (dissociation) in a single experiment. The results indicate that the quaternary architecture of a complex influences its residual shape following removal of a single subunit by collision-induced dissociation tandem mass spectrometry. Complexes whose subunits are bound to several neighbouring subunits to create a ring-like three-dimensional (3D) architecture undergo significant collapse upon dissociation. In contrast, subunits which have only a single neighbouring subunit within a complex retain much of their original shape upon complex dissociation. Specifically, we have determined the architecture of two transient, on-pathway intermediates observed during in vitro viral capsid assembly. Knowledge of the mass, stoichiometry and cross-sectional area of each viral assembly intermediate allowed us to model a range of potential structures based on the known X-ray structure of the coat protein building blocks. Comparing the cross-sectional areas of these potential architectures before and after dissociation provided tangible evidence for the assignment of the topologies of the complexes, which have been found to encompass both the 3-fold and the 5-fold symmetry axes of the final icosahedral viral shell. Such insights provide unique information about virus assembly pathways that could allow the design of anti-viral therapeutics directed at the assembly step. This methodology can be readily applied to the structural characterisation of many other non-covalently bound macromolecular complexes and their assembly pathways. Copyright © 2010 John Wiley & Sons, Ltd. [source] The evolutionarily conserved residue A653 plays a key role in HERG channel closingTHE JOURNAL OF PHYSIOLOGY, Issue 11 2009Svetlana Z. Stepanovic Human ether-a-go-go- related gene (HERG) encodes the rapid, outwardly rectifying K+ current IKr that is critical for repolarization of the cardiac action potential. Congenital HERG mutations or unintended pharmaceutical block of IKr can lead to life-threatening arrhythmias. Here, we assess the functional role of the alanine at position 653 (HERG-A653) that is highly conserved among evolutionarily divergent K+ channels. HERG-A653 is close to the ,glycine hinge' implicated in K+ channel opening, and is flanked by tyrosine 652 and phenylalanine 656, which contribute to the drug binding site. We substituted an array of seven (I, C, S, G, Y, V and T) amino acids at position 653 and expressed individual variants in heterologous systems to assess changes in gating and drug binding. Substitution of A653 resulted in negative shifts of the V1/2 of activation ranging from ,23.6 (A653S) to ,62.5 (A653V) compared to ,11.2 mV for wild-type (WT). Deactivation was also drastically altered: channels with A653I/C substitutions exhibited delayed deactivation in response to test potentials above the activation threshold, while A653S/G/Y/V/T failed to deactivate under those conditions and required hyperpolarization and prolonged holding potentials at ,130 mV. While A653S/G/T/Y variants showed decreased sensitivity to the IKr inhibitor dofetilide, these changes could not be correlated with defects in channel closure. Homology modelling suggests that in the closed state, A653 forms tight contacts with several residues from the neighbouring subunit in the tetramer, playing a key role in S6 helix packing at the narrowest part of the vestibule. Our study suggests that A653 plays an important functional role in the outwardly rectifying gating behaviour of HERG, supporting channel closure at membrane potentials negative to the channel activation threshold. [source] Structures of Arthrobacter globiformis urate oxidase,ligand complexesACTA CRYSTALLOGRAPHICA SECTION D, Issue 8 2008Ella Czarina Magat Juan The enzyme urate oxidase catalyzes the conversion of uric acid to 5-hydroxyisourate, one of the steps in the ureide pathway. Arthrobacter globiformis urate oxidase (AgUOX) was crystallized and structures of crystals soaked in the substrate uric acid, the inhibitor 8-azaxanthin and allantoin have been determined at 1.9,2.2,Å resolution. The biological unit is a homotetramer and two homotetramers comprise the asymmetric crystallographic unit. Each subunit contains two T-fold domains of ,,,,,, topology, which are usually found in purine- and pterin-binding enzymes. The uric acid substrate is bound tightly to the enzyme by interactions with Arg180, Leu222 and Gln223 from one subunit and with Thr67 and Asp68 of the neighbouring subunit in the tetramer. In the other crystal structures, lithium borate, 8-azaxanthin and allantoate are bound to the enzyme in a similar manner as uric acid. Based on these AgUOX structures, the enzymatic reaction mechanism of UOX has been proposed. [source] Determining the topology of virus assembly intermediates using ion mobility spectrometry,mass spectrometryRAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 20 2010Tom W. Knapman We have combined ion mobility spectrometry,mass spectrometry with tandem mass spectrometry to characterise large, non-covalently bound macromolecular complexes in terms of mass, shape (cross-sectional area) and stability (dissociation) in a single experiment. The results indicate that the quaternary architecture of a complex influences its residual shape following removal of a single subunit by collision-induced dissociation tandem mass spectrometry. Complexes whose subunits are bound to several neighbouring subunits to create a ring-like three-dimensional (3D) architecture undergo significant collapse upon dissociation. In contrast, subunits which have only a single neighbouring subunit within a complex retain much of their original shape upon complex dissociation. Specifically, we have determined the architecture of two transient, on-pathway intermediates observed during in vitro viral capsid assembly. Knowledge of the mass, stoichiometry and cross-sectional area of each viral assembly intermediate allowed us to model a range of potential structures based on the known X-ray structure of the coat protein building blocks. Comparing the cross-sectional areas of these potential architectures before and after dissociation provided tangible evidence for the assignment of the topologies of the complexes, which have been found to encompass both the 3-fold and the 5-fold symmetry axes of the final icosahedral viral shell. Such insights provide unique information about virus assembly pathways that could allow the design of anti-viral therapeutics directed at the assembly step. This methodology can be readily applied to the structural characterisation of many other non-covalently bound macromolecular complexes and their assembly pathways. Copyright © 2010 John Wiley & Sons, Ltd. [source] |