Home About us Contact | |||
Negative Shift (negative + shift)
Selected AbstractsProtein kinase A modulates A-type potassium currents of larval zebrafish (Danio rerio) white muscle fibresACTA PHYSIOLOGICA, Issue 2 2009C. A. Coutts Abstract Aims:, Potassium (K+) channels are involved in regulating cell excitability and action potential shape. To our knowledge, very little is known about the modulation of A-type K+ currents in skeletal muscle fibres. Therefore, we sought to determine whether K+ currents of zebrafish white skeletal muscle were modulated by protein kinase A (PKA). Methods:, Pharmacology and whole-cell patch clamp were used to examine A-type K+ currents and action potentials associated with zebrafish white skeletal muscle fibres. Results:, Activation of PKA by a combination of forskolin + 3-isobutyl-1-methylxanthine (Fsk + IBMX) decreased the peak current density by ,60% and altered the inactivation kinetics of A-type K+ currents. The specific PKA inhibitor H-89 partially blocked the Fsk + IBMX-induced reduction in peak current density, but had no effect on the change in decay kinetics. Fsk + IBMX treatment did not shift the activation curve, but it significantly reduced the slope factor of activation. Activation of PKA by Fsk + IBMX resulted in a negative shift in the V50 of inactivation. H-89 prevented all Fsk + IBMX-induced changes in the steady-state properties of K+ currents. Application of Fsk + IBMX increased action potential amplitude, but had no significant effect on action potential threshold, half width or recovery rate, when fibres were depolarized with single pulses, paired pulses or with high-frequency stimuli. Conclusion:, PKA modulates the A-type K+ current in zebrafish skeletal muscle and affects action potential properties. Our results provide new insights into the role of A-type K+ channels in muscle physiology. [source] Blockade of HERG K+ channel by an antihistamine drug brompheniramine requires the channel binding within the S6 residue Y652 and F656JOURNAL OF APPLIED TOXICOLOGY, Issue 2 2008Sang-Joon Park Abstract A number of clinically used drugs block delayed rectifier K+ channels and prolong the duration of cardiac action potentials associated with long QT syndrome. This study investigated the molecular mechanisms of voltage-dependent inhibition of human ether- a-go-go -related gene (HERG) delayed rectifier K+ channels expressed in HEK-293 cells by brompheniramine, an antihistamine. Brompheniramine inhibited HERG current in a concentration-dependent manner with the half-maximal inhibitory concentration (IC50) value of 1.7 µm at 0 mV. A block of HERG current by brompheniramine was enhanced by progressive membrane depolarization and showed significantly negative shift in voltage-dependence of channel activation. Inhibition of HERG current by brompheniramine showed time-dependence. The S6 residue HERG mutant Y652A and F656C largely reduced the blocking potency of HERG current. These results indicate that brompheniramine mainly inhibited the HERG potassium channel through the residue Y652 and F656 and these residues may be an obligatory determinant in inhibition of HERG current for brompheniramine. Copyright © 2007 John Wiley & Sons, Ltd. [source] Regulatory Mechanisms and Physiological Relevance of a Voltage-Gated H+ Channel in Murine Osteoclasts: Phorbol Myristate Acetate Induces Cell Acidosis and the Channel Activation,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 11 2003Hiroyuki Mori Abstract The voltage-gated H+ channel is a powerful H+ extruding mechanism of osteoclasts, but its functional roles and regulatory mechanisms remain unclear. Electrophysiological recordings revealed that the H+ channel operated on activation of protein kinase C together with cell acidosis. Introduction: H+ is a key signaling ion in bone resorption. In addition to H+ pumps and exchangers, osteoclasts are equipped with H+ conductive pathways to compensate rapidly for pH imbalance. The H+ channel is distinct in its strong H+ extrusion ability and voltage-dependent gatings. Methods: To investigate how and when the H+ channel is available in functional osteoclasts, the effects of phorbol 12-myristate 13-acetate (PMA), an activator for protein kinase C, on the H+ channel were examined in murine osteoclasts generated in the presence of soluble RANKL (sRANKL) and macrophage-colony stimulating factor (M-CSF). Results and Conclusions: Whole cell recordings clearly showed that the H+ current was enhanced by increasing the pH gradient across the plasma membrane (,pH), indicating that the H+ channel changed its activity by sensing ,pH. The reversal potential (Vrev) was a valuable tool for the real-time monitoring of ,pH in clamped cells. In the permeabilized patch, PMA (10 nM-1.6 ,M) increased the current density and the activation rate, slowed decay of tail currents, and shifted the threshold toward more negative voltages. In addition, PMA caused a negative shift of Vrev, suggesting that intracellular acidification occurred. The PMA-induced cell acidosis was confirmed using a fluorescent pH indicator (BCECF), which recovered quickly in a K+ -rich alkaline solution, probably through the activated H+ channel. Both cell acidosis and activation of the H+ channel by PMA were inhibited by staurosporine. In ,80% of cells, the PMA-induced augmentation in the current activity remained after compensating for the ,pH changes, implying that both ,pH-dependent and -independent mechanisms mediated the channel activation. Activation of the H+ channel shifted the membrane potential toward Vrev. These data suggest that the H+ channel may contribute to regulation of the pH environments and the membrane potential in osteoclasts activated by protein kinase C. [source] The selective processing of briefly presented affective pictures: An ERP analysisPSYCHOPHYSIOLOGY, Issue 3 2004Harald T. Schupp Abstract Recent event-related potential (ERP) studies revealed the selective processing of affective pictures. The present study explored whether the same phenomenon can be observed when pictures are presented only briefly. Toward this end, pleasant, neutral, and unpleasant pictures from the International Affective Pictures Series were presented for 120 ms while event related potentials were measured by dense sensor arrays. As observed for longer picture presentations, brief affective pictures were selectively processed. Specifically, pleasant and unpleasant pictures were associated with an early endogenous negative shift over temporo-occipital sensors compared to neutral images. In addition, affective pictures elicited enlarged late positive potentials over centro-parietal sensor sites relative to neutral images. These data suggest that a quick glimpse of emotionally relevant stimuli appears sufficient to tune the brain for selective perceptual processing. [source] High cortical spreading depression susceptibility and migraine-associated symptoms in Cav2.1 S218L miceANNALS OF NEUROLOGY, Issue 1 2010Arn M. J. M. van den Maagdenberg PhD Objective The CACNA1A gene encodes the pore-forming subunit of neuronal CaV2.1 Ca2+ channels. In patients, the S218L CACNA1A mutation causes a dramatic hemiplegic migraine syndrome that is associated with ataxia, seizures, and severe, sometimes fatal, brain edema often triggered by only a mild head trauma. Methods We introduced the S218L mutation into the mouse Cacna1a gene and studied the mechanisms for the S218L syndrome by analyzing the phenotypic, molecular, and electrophysiological consequences. Results Cacna1aS218L mice faithfully mimic the associated clinical features of the human S218L syndrome. S218L neurons exhibit a gene dosage,dependent negative shift in voltage dependence of CaV2.1 channel activation, resulting in enhanced neurotransmitter release at the neuromuscular junction. Cacna1aS218L mice also display an exquisite sensitivity to cortical spreading depression (CSD), with a vastly reduced triggering threshold, an increased propagation velocity, and frequently multiple CSD events after a single stimulus. In contrast, mice bearing the R192Q CACNA1A mutation, which in humans causes a milder form of hemiplegic migraine, typically exhibit only a single CSD event after one triggering stimulus. Interpretation The particularly low CSD threshold and the strong tendency to respond with multiple CSD events make the S218L cortex highly vulnerable to weak stimuli and may provide a mechanistic basis for the dramatic phenotype seen in S218L mice and patients. Thus, the S218L mouse model may prove a valuable tool to further elucidate mechanisms underlying migraine, seizures, ataxia, and trauma-triggered cerebral edema. ANN NEUROL 2010;67:85,98 [source] Changes in body image satisfaction during pregnancy: A comparison of high exercising and low exercising womenAUSTRALIAN AND NEW ZEALAND JOURNAL OF OBSTETRICS AND GYNAECOLOGY, Issue 1 2003Nadia Boscaglia Abstract Objective: This study aimed to compare ratings of body image satisfaction (BIS) from 6 months prepregnancy to 23,30 weeks' gestation for high exercising and low exercising pregnant women. The authors also aimed to assess and compare expectations of BIS for the post-partum period in high and low exercising women. Design: A partial prospective approach was implemented. Sample: A total of 71 healthy pregnant women (40 high exercisers and 31 low exercisers) participated. Methods: Participants completed a series of questionnaires at 15,22 weeks' gestation and 23,30 weeks' gestation. Main outcome measures: There were two main outcome measures. At 15,22 weeks' gestation there was an exercise inventory and two versions of the Body Cathexis Scale (BCS) (retrospective prepregnancy BIS and current BIS). At 23,30 weeks' gestation there was an exercise inventory and two versions of the BCS (current BIS and projected post-partum BIS). Results: ,At 15,22 weeks' gestation, high exercisers demonstrated significantly higher levels of BIS compared to low exercisers. There were no other significant differences between groups. Within groups, high exercisers were significantly more satisfied with their bodies at 15,22 weeks' gestation compared to 6 months prepregnancy, and expected to be less satisfied with their bodies at 6 weeks' post-partum than they were during pregnancy. Low exercisers demonstrated no significant changes over time. Conclusions: The findings suggest that women are able to assimilate the bodily changes of pregnancy without a negative shift in BIS. However, women who exercise during pregnancy may respond more favourably to changes in their bodies at early pregnancy compared to women who remain sedentary. [source] Fluorescent and Electrochemical Sensing of Polyphosphate Nucleotides by Ferrocene Functionalised with Two ZnII(TACN)(pyrene) ComplexesCHEMISTRY - A EUROPEAN JOURNAL, Issue 30 2010Zhanghua Zeng Dr. Abstract The [Fcbis{ZnII(TACN)(Py)}] complex, comprising two ZnII(TACN) ligands (Fc=ferrocene; Py=pyrene; TACN=1,4,7-triazacyclononane) bearing fluorescent pyrene chromophores linked by an electrochemically active ferrocene molecule has been synthesised in high yield through a multistep procedure. In the absence of the polyphosphate guest molecules, very weak excimer emission was observed, indicating that the two pyrene-bearing ZnII(TACN) units are arranged in a trans -like configuration with respect to the ferrocene bridging unit. Binding of a variety of polyphosphate anionic guests (PPi and nucleotides di- and triphosphate) promotes the interaction between pyrene units and results in an enhancement in excimer emission. Investigations of phosphate binding by 31P,NMR spectroscopy, fluorescence and electrochemical techniques confirmed a 1:1 stoichiometry for the binding of PPi and nucleotide polyphosphate anions to the bis(ZnII(TACN)) moiety of [Fcbis{ZnII(TACN)(Py)}] and indicated that binding induces a trans to cis configuration rearrangement of the bis(ZnII(TACN)) complexes that is responsible for the enhancement of the pyrene excimer emission. Pyrophosphate was concluded to have the strongest affinity to [Fcbis{ZnII(TACN)(Py)}] among the anions tested based on a six-fold fluorescence enhancement and 0.1,V negative shift in the potential of the ferrocene/ferrocenium couple. The binding constant for a variety of polyphosphate anions was determined from the change in the intensity of pyrene excimer emission with polyphosphate concentration, measured at 475,nm in CH3CN/Tris-HCl (1:9) buffer solution (10.0,mM, pH,7.4). These measurements confirmed that pyrophosphate binds more strongly (Kb=(4.45±0.41)×106,M,1) than the other nucleotide di- and triphosphates (Kb=1,50×105,M,1) tested. [source] Numerical analysis of boundary-value problems for singularly perturbed differential-difference equations: small shifts of mixed type with rapid oscillationsINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, Issue 3 2004M. K. Kadalbajoo Abstract We study the boundary-value problems for singularly perturbed differential-difference equations with small shifts. Similar boundary-value problems are associated with expected first-exit time problems of the membrane potential in models for activity of neurons (SIAM J. Appl. Math. 1994; 54: 249,283; 1982; 42: 502,531; 1985; 45: 687,734) and in variational problems in control theory. In this paper, we present a numerical method to solve boundary-value problems for a singularly perturbed differential-difference equation of mixed type, i.e. which contains both type of terms having negative shifts as well as positive shifts, and consider the case in which the solution of the problem exhibits rapid oscillations. The stability and convergence analysis of the method is given. The effect of small shift on the oscillatory solution is shown by considering the numerical experiments. The numerical results for several test examples demonstrate the efficiency of the method. Copyright © 2004 John Wiley & Sons, Ltd. [source] The evolutionarily conserved residue A653 plays a key role in HERG channel closingTHE JOURNAL OF PHYSIOLOGY, Issue 11 2009Svetlana Z. Stepanovic Human ether-a-go-go- related gene (HERG) encodes the rapid, outwardly rectifying K+ current IKr that is critical for repolarization of the cardiac action potential. Congenital HERG mutations or unintended pharmaceutical block of IKr can lead to life-threatening arrhythmias. Here, we assess the functional role of the alanine at position 653 (HERG-A653) that is highly conserved among evolutionarily divergent K+ channels. HERG-A653 is close to the ,glycine hinge' implicated in K+ channel opening, and is flanked by tyrosine 652 and phenylalanine 656, which contribute to the drug binding site. We substituted an array of seven (I, C, S, G, Y, V and T) amino acids at position 653 and expressed individual variants in heterologous systems to assess changes in gating and drug binding. Substitution of A653 resulted in negative shifts of the V1/2 of activation ranging from ,23.6 (A653S) to ,62.5 (A653V) compared to ,11.2 mV for wild-type (WT). Deactivation was also drastically altered: channels with A653I/C substitutions exhibited delayed deactivation in response to test potentials above the activation threshold, while A653S/G/Y/V/T failed to deactivate under those conditions and required hyperpolarization and prolonged holding potentials at ,130 mV. While A653S/G/T/Y variants showed decreased sensitivity to the IKr inhibitor dofetilide, these changes could not be correlated with defects in channel closure. Homology modelling suggests that in the closed state, A653 forms tight contacts with several residues from the neighbouring subunit in the tetramer, playing a key role in S6 helix packing at the narrowest part of the vestibule. Our study suggests that A653 plays an important functional role in the outwardly rectifying gating behaviour of HERG, supporting channel closure at membrane potentials negative to the channel activation threshold. [source] |